The human papillomavirus (HPV) vaccines effectively protect against new infections of up to four HPV subtypes. However, these vaccines are not protective against many other clinically relevant HPV subtypes and are ineffective at treating established HPV infections. There is therefore a significant need for antiviral treatments for persistent HPV infections. A promising anti-HPV drug target is the interaction between the HPV E2 protein and cellular bromodomain-containing protein 4 (Brd4) since this protein complex mediates several processes important for the viral life cycle including viral genome maintenance, replication, and transcription. Using bimolecular fluorescence complementation (BiFC) technology, we demonstrate the E2 and Brd4 interaction on both interphase chromatin and mitotic chromosomes throughout mitosis. The E2-Brd4 BiFC was significantly diminished by mutating the Brd4 binding sites in E2 or by a dominant negative inhibitor of the E2-Brd4 interaction, demonstrating the potential of BiFC for identifying inhibitors of this important virus-host interaction. Importantly, when Brd4 was released from chromatin using the bromodomain inhibitor JQ1(+), the E2-Brd4 interacting complex relocated into foci that no longer associate with mitotic chromosomes, pointing to JQ1(+) as a promising antiviral inhibitor of HPV genome maintenance during HPV persistent infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808292 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077994 | PLOS |
Bioorg Chem
January 2025
School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China. Electronic address:
Both type 1 and type 2 diabetes can lead to diabetic nephropathy (DN), a serious microvascular complication. Bromodomain 4 (BRD4), a member of the BET protein family, has been linked to various diseases, including cancer, inflammation, and fibrosis, and may be involved in the development of diabetes and its complications. In this study, we first explored the role and mechanism of BRD4 in DN.
View Article and Find Full Text PDFBMC Cancer
January 2025
Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China. Electronic address:
The activation of ferroptosis in refractory cancers may enhances their sensitivity to apoptosis-based chemotherapy, resulting in a synergistic effect via combination therapy. To enhance the anticancer effect of JQ1, a known BRD4 inhibitor with a significant antiproliferative effect on triple-negative breast cancer (TNBC), various new JQ1 derivatives as dual ferroptosis and apoptosis inducers were designed and synthesized. Among them, compound BG11 revealed a remarkable inhibitory activity against TNBC cells and obviously suppressed BRD4 and GPX4 expression and activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!