Folate catabolism involves cleavage of the C(9)-N(10) bond to form p-aminobenzoylgluamate (PABG) and pterin. PABG is then acetylated by human arylamine N-acetyltransferase 1 (NAT1) before excretion in the urine. Mice null for the murine NAT1 homolog (Nat2) show several phenotypes consistent with altered folate homeostasis. However, the exact role of Nat2 in the folate pathway in vivo has not been reported. Here, we examined the effects of Nat2 deletion in male and female mice on the tissue levels of 5-methyl-tetrahydrofolate and the methionine-S-adenosylmethionine cycle. We found significant gender differences in hepatic and renal homocysteine, S-adenosylmethionine and methionine levels consistent with a more active methionine-S-adenosylmethionine cycle in female tissues. In addition, methionine levels were significantly higher in female liver and kidney. PABG was higher in female liver tissue but lower in kidney compared to male tissues. In addition, qPCR of mRNA extracted from liver tissue suggested a significantly lower level of Nat2 expression in female animals. Deletion of Nat2 affected liver 5- methyl-tetrahydrofolate in female mice but had little effect on other components of the methionine-S-adenosylmethionine cycle. No N-acetyl-PABG was observed in any tissues in Nat2 null mice, consistent with the role of Nat2 in PABG acetylation. Surprisingly, tissue PABG levels were similar between wild type and Nat2 null mice. These results show that Nat2 is not required to maintain tissue PABG homeostasis in vivo under normal conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808426PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077923PLOS

Publication Analysis

Top Keywords

methionine-s-adenosylmethionine cycle
12
nat2
9
gender differences
8
role nat2
8
female mice
8
methionine levels
8
tissues addition
8
higher female
8
female liver
8
liver tissue
8

Similar Publications

We detected the major QTL- qSR.A07, which regulated stem strength and was fine-mapped to 490 kb. BnaA07G0302800ZS and BnaA07G0305700ZS as the candidate functional genes were identified at qSR.

View Article and Find Full Text PDF

A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans.

View Article and Find Full Text PDF

Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases, both of which are important for the development of KSHV-related cancers. As one of the most abundant RNA modifications, N-methyladenosine (mA) and its related complexes regulate KSHV life cycle. However, the role of METTL16, a newly discovered RNA methyltransferase, in KSHV life cycle remains unknown.

View Article and Find Full Text PDF

Plasma One-Carbon Metabolism-Related Micronutrients and the Risk of Breast Cancer: Involvement of DNA Methylation.

Nutrients

August 2023

Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China.

Findings of epidemiologic studies focusing on the association between one-carbon metabolism-related micronutrients and breast cancer risk, along with the involvement of DNA methylation, have been inconsistent and incomprehensive. We conducted a case-control study in China including 107 paired participants and comprehensively detected 12 plasma one-carbon metabolism-related micronutrients. Genomic DNA methylation was measured using an 850 K chip and differential methylation probes (DMPs) were identified.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective treatment. Diet, as a modifiable risk factor for AD, could potentially be targeted to slow disease onset and progression. However, complexity of the human diet and indirect effects of the microbiome make it challenging to identify protective nutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!