Dramatic environmental changes associated with global cooling since the late Miocene, and the onset of glacial-interglacial cycles in the Pleistocene served as a backdrop to the evolutionary radiation of modern bears (family Ursidae). These environmental changes likely prompted changes in food availability, and triggered dietary adaptations that served as motive forces in ursid evolution. Here, we assess correspondence of dental microwear textures of first and second lower molars with diet in extant ursids. We use the resulting baseline data to evaluate the hypothesis that the Pleistocene giant short-faced bear, Arctodus simus, was a bone consumer and hyper-scavenger at Rancho La Brea, California, USA. Significant variation along the tooth row is consistent with functional differentiation, with the second molar serving as a better dietary recorder than the first. Results evince significant variation among species: carnivorous and omnivorous ursids (Ursus maritimus, U. americanus) have significantly higher and more variable complexity (Asfc) than more herbivorous ones (Ailuropoda melanoleuca, Tremarctos ornatus, U. malayanus), and A. melanoleuca is differentiated from U. maritimus and U. americanus by significantly higher and more variable anisotropy (epLsar) values. Arctodus simus from Rancho La Brea exhibits wear attributes most comparable to its closest living relative (T. ornatus), which is inconsistent with hard-object (e.g., bone) consumption, and the hypothesis that short-faced bears were bone consuming hyper-scavengers across their range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813673 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077531 | PLOS |
J Morphol
March 2022
Department of Earth Sciences, University of Bristol, Bristol, UK.
The extinct sthenurine (giant, short-faced) kangaroos have been proposed to have a different type of locomotor behavior to extant (macropodine) kangaroos, based both on physical limitations (the size of many exceeds the proposed limit for hopping) and anatomical features (features of the hind limb anatomy suggestive of weight-bearing on one leg at a time). Here, we use micro computerised tomography (micro-CT) scans of the pedal bones of six kangaroos, three sthenurine, and three macropodine, ranging from ~50 to 150 kg, to investigate possible differences in bone resistances to bending and cortical bone distribution that might relate to differences in locomotion. Using second moment of area analysis, we show differences in resistance to bending between the two subfamilies.
View Article and Find Full Text PDFCurr Biol
June 2021
Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK; MARUM, University of Bremen, Bremen, Germany. Electronic address:
Analysis of ancient environmental DNA (eDNA) has revolutionized our ability to describe biological communities in space and time, by allowing for parallel sequencing of DNA from all trophic levels. However, because environmental samples contain sparse and fragmented data from multiple individuals, and often contain closely related species, the field of ancient eDNA has so far been limited to organellar genomes in its contribution to population and phylogenetic studies. This is in contrast to data from fossils where full-genome studies are routine, despite these being rare and their destruction for sequencing undesirable.
View Article and Find Full Text PDFPLoS One
March 2020
Zoology Division, School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, Australia.
The Sthenurinae were a diverse subfamily of short-faced kangaroos that arose in the Miocene and diversified during the Pliocene and Pleistocene. Many species possessed skull morphologies that were relatively structurally reinforced with bone, suggesting that they were adapted to incorporate particularly resistant foods into their diets. However, the functional roles of many unique, robust features of the sthenurine cranium are not yet clearly defined.
View Article and Find Full Text PDFSyst Biol
May 2019
School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2, George Street, Brisbane, QLD 4000, Australia.
Combined "total evidence" analysis of molecular and morphological data offers the opportunity to objectively merge fossils into the tree of life, and challenges the primacy of solely DNA based phylogenetic and dating inference, even among modern taxa. To investigate the relative utility of DNA, morphology, and total evidence for evolutionary inference, we sequenced the first near-complete mitochondrial genomes from extinct Australian megafauna: a 40-50 thousand year old giant short-faced kangaroo (Simosthenurus occidentalis) and giant wallaby (Protemnodon anak). We analyzed the ancient DNA and fossil data alongside comparable data from extant species to infer phylogeny, divergence times, and ancestral body mass among macropods (kangaroos and wallabies).
View Article and Find Full Text PDFSci Rep
December 2017
Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, 03080, Spain.
During the late Pleistocene of North America (≈36,000 to 10,000 years ago), saber-toothed cats, American lions, dire wolves, and coyotes competed for prey resources at Rancho La Brea (RLB). Despite the fact that the giant short-faced bear (Arctodus simus) was the largest land carnivoran present in the fauna, there is no evidence that it competed with these other carnivores for prey at the site. Here, for the first time, we report carious lesions preserved in specimens of A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!