Diabetic nephropathy is the most common cause of chronic kidney failure and end-stage renal disease in the Western World. One of the major characteristics of this disease is the excessive accumulation of extracellular matrix (ECM) in the kidney glomeruli. While both environmental and genetic determinants are recognized for their role in the development of diabetic nephropathy, epigenetic factors, such as DNA methylation, long non-coding RNAs, and microRNAs, have also recently been found to underlie some of the biological mechanisms, including ECM accumulation, leading to the disease. We previously found that a long non-coding RNA, the plasmacytoma variant translocation 1 (PVT1), increases plasminogen activator inhibitor 1 (PAI-1) and transforming growth factor beta 1 (TGF-β1) in mesangial cells, the two main contributors to ECM accumulation in the glomeruli under hyperglycemic conditions, as well as fibronectin 1 (FN1), a major ECM component. Here, we report that miR-1207-5p, a PVT1-derived microRNA, is abundantly expressed in kidney cells, and is upregulated by glucose and TGF-β1. We also found that like PVT1, miR-1207-5p increases expression of TGF-β1, PAI-1, and FN1 but in a manner that is independent of its host gene. In addition, regulation of miR-1207-5p expression by glucose and TGFβ1 is independent of PVT1. These results provide evidence supporting important roles for miR-1207-5p and its host gene in the complex pathogenesis of diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808414 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077468 | PLOS |
J Res Med Sci
November 2024
Water and Electrolytes Research Center, and Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
PLoS One
January 2025
Department of Nephrology, Pu'er People's Hospital, Pu'er, Yunnan, China.
Diabetic nephropathy (DN) is the single largest cause of end-stage renal disease (ESRD). Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress have been considered to play a very important role in the progress of diabetic nephropathy (DN). Effective drugs for the treatment of diabetic nephropathy still need to be explored.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bengaluru, IND.
Background Type 2 diabetes mellitus (T2DM) is associated with a high risk of developing microvascular complications such as diabetic nephropathy, diabetic neuropathy (DN), and diabetic retinopathy (DR), leading to significant morbidity. Early detection of these complications is crucial for improving patient outcomes. Neutrophil-lymphocyte ratio (NLR) and urine albumin-creatinine ratio (UACR) show promise as cost-effective and accessible biomarkers for the early detection of microvascular complications in T2DM.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p- axis in diabetic nephropathy, an high glucose-induced mesangial cell model was established.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Nephrology, Affiliated Bao'an Hospital of Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen, China.
Objectives: The study will evaluate the effectiveness and safety of finerenone in patients diagnosed with diabetic kidney disease (DKD).
Methods: Various databases including PubMed, Sinomed, Web of Science, Embase, Clinical Trials, and Cochrane Library were systematically reviewed for pertinent studies published from the beginning to February 2024.This meta-analysis utilized RevMan 5.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!