Background: Phloem-feeding insects can manipulate plant-induced resistance and are able to suppress effective jasmonic acid/ethylene (JA/ET) defenses by the induction of inefficient salicylic acid (SA) based responses. As a result, activation of the phenylpropanoid biosynthesis pathway in transgenic plants is anticipated to cause complex interactions between phloem-feeding insects and their host plants due to predicted contradiction between two defense forces: the toxicity of various phenylpropanoids and the accumulation of SA via a branch of the activated pathway.

Methodology/principal Findings: Here, we investigated the effect of activating the phenylpropanoids pathway in Nicotiana tabacum, by over-expression of the PAP1 transcription factor, on the whitefly Bemisia tabaci, a phloem-feeding insect model. Our performance assays indicated that the over-expression made the transgenic plants a more suitable host for B. tabaci than wild-type (WT) plants, although these plants accumulated significantly higher levels of flavonoids. Transcription analyses of indicator genes in the SA (PR1a) and JA/ET (ERF1, COI1 and AOC) pathways followed by quantification of the SA and JA hormone levels, indicated that B. tabaci infestation periods longer than 8 hours, caused higher levels of activity of SA signaling in transgenic plants and higher levels of JA/ET signaling in WT plants.

Conclusions/significance: Taken together, these results emphasize the important role JA/ET-induced defenses play in protecting plants from successful infestation by B. tabaci and likely other phloem-feeding insects. It also indicates the necessity of phloem feeders to suppress these defenses for efficient utilization of plant hosts. Our data also indicate that the defensive chemistry produced by the phenylpropanoids pathway has only a minor effect on the insect fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808378PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076619PLOS

Publication Analysis

Top Keywords

phloem-feeding insects
12
transgenic plants
12
higher levels
12
activation phenylpropanoid
8
pathway nicotiana
8
nicotiana tabacum
8
whitefly bemisia
8
bemisia tabaci
8
phenylpropanoids pathway
8
tabaci phloem-feeding
8

Similar Publications

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

Phytoplasmas are a group of plant-pathogenic, cell-wall-less bacteria vectored primarily by leafhoppers (Hemiptera Cicadellidae), one of the most diverse families of insects. Despite the importance of documenting associations between phytoplasmas, their insect vectors, and plant hosts to prevent disease outbreaks, such knowledge is currently highly incomplete and largely neglects the diversity of the system in natural areas. Here, we used anchored hybrid enrichment (AHE) to recover the DNA of five plant genes (, , , , and ) in 58 phloem-feeding leafhoppers from around the world that had previously tested positive for phytoplasma infection.

View Article and Find Full Text PDF

The Changes in Cross-Resistance, Fitness, and Feeding Behavior in as Their Resistance to Sulfoxaflor Declines.

Insects

November 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The increasing resistance in field populations to sulfoxaflor and many different types of insecticides represents a significant challenge in protecting cotton production in China. Although resistant pests were able to regain their susceptibility to insecticides after the reduction in insecticide applications, some of their biological parameters remained different from susceptible strains. The resistance to sulfoxaflor was unstable in after the loss of selective pressure.

View Article and Find Full Text PDF

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

Wolbachia infection modifies phloem feeding behavior but not plant virus transmission by a hemipteran host.

J Insect Physiol

December 2024

USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA.

Wolbachia-infected and uninfected subpopulations of beet leafhoppers, Circulifer tenellus (Baker) (Hemiptera: Cicadellidae), co-occur in the Columbia Basin region of Washington and Oregon. While facultative endosymbionts such as Hamiltonella defensa have demonstrably altered feeding/probing behavior in hemipteran hosts, the behavioral phenotypes conferred by Wolbachia to its insect hosts, including feeding/probing, are largely understudied. We studied the feeding/probing behavior of beet leafhoppers with and without Wolbachia using electropenetrography, along with corresponding inoculation rates of beet curly top virus, a phloem-limited plant pathogen vectored by beet leafhoppers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!