Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Cholesterol efflux relates to cardiovascular disease but cannot predict cellular cholesterol mass changes. We asked whether influx and net flux assays provide additional insights.
Approach And Results: Adapt a bidirectional flux assay to cells where efflux has clinical correlates and examine the association of influx, efflux, and net flux to serum triglycerides (TGs). Apolipoprotein B-depleted (high-density lipoprotein-fraction) serum from individuals with unfavorable lipids (median [interquartile range]; high-density lipoprotein-cholesterol=39 [32-42], low-density lipoprotein-cholesterol=109 [97-137], TGs=258 [184-335] mg/dL; n=13) promoted greater ATP-binding cassette transporter A1-mediated [1,2-(3H)] cholesterol efflux (3.8±0.3%/4 hour versus 1.2±0.4%/4 hour; P<0.0001) from cyclic 3',5'-amp(CTP-amp)-treated J774 macrophages than from individuals with favorable lipids (high-density lipoprotein-cholesterol=72 [58-88], low-density lipoprotein-cholesterol=111 [97-131], TGs=65 [56-69] mg/dL; n=10). Thus, high TGs associated with more ATP-binding cassette transporter A1 acceptors. Efflux of cholesterol mass (μg free cholesterol/mg cell protein per 8 hour) to serum was also higher (7.06±0.33 versus 5.83±0.48; P=0.04). However, whole sera from individuals with unfavorable lipids promoted more influx (5.14±0.65 versus 2.48±0.85; P=0.02) and lower net release of cholesterol mass (1.93±0.46 versus 3.36±0.47; P=0.04). The pattern differed when mass flux was measured using apolipoprotein B-depleted serum rather than serum. Although individuals with favorable lipids tended to have greater influx than those with unfavorable lipids, efflux to apolipoprotein B-depleted serum was markedly higher (6.81±0.04 versus 2.62±0.14; P<0.0001), resulting in an efflux:influx ratio of ≈3-fold. Thus both serum and apolipoprotein B-depleted serum from individuals with favorable lipids promoted greater net cholesterol mass release despite increased ATP-binding cassette transporter A1-mediated efflux in samples of individuals with high TGs/unfavorable lipids.
Conclusions: When considering the efficiency of serum specimens to modulate cell cholesterol content, both influx and efflux need to be measured.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005807 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.113.302437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!