L-type voltage-dependent Ca(2+) channels (LVDCC) and large conductance Ca(2+)-activated K(+) channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca(2+) release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca(2+) influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K(+) revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca(2+) dynamics including the negative feedback, to control the arterial excitability and contractility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868784 | PMC |
http://dx.doi.org/10.1074/jbc.M113.511485 | DOI Listing |
ACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, New York University, New York, New York 10003, USA.
The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.
The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States.
In recent years, targeted protein degradation (TPD) has emerged as a powerful therapeutic modality utilizing both heterobifunctional ligand-directed degraders (LDDs) and molecular glues (e.g., CELMoDs) to recruit E3 ligases for inducing polyubiquitination and subsequent proteasomal degradation of target proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!