Oncogene-induced senescence is a permanent cell cycle arrest characterized by extensive chromatin reorganization. Here, we investigated the specific targeting and dynamics of histone H3 variants in human primary senescent cells. We show that newly synthesized epitope-tagged H3.3 is incorporated in senescent cells but does not accumulate in senescence-associated heterochromatin foci (SAHF). Instead, we observe that new H3.3 colocalizes with its specific histone chaperones within the promyelocytic leukemia nuclear bodies (PML-NBs) and is targeted to PML-NBs in a DAXX-dependent manner both in proliferating and senescent cells. We further show that overexpression of DAXX enhances targeting of H3.3 in large PML-NBs devoid of transcriptional activity and promotes the accumulation of HP1, independently of H3K9me3. Loss of H3.3 from pericentromeric heterochromatin upon DAXX or PML depletion suggests that the targeting of H3.3 to PML-NBs is implicated in pericentromeric heterochromatin organization. Together, our results underline the importance of the replication-independent chromatin assembly pathway for histone replacement in non-dividing senescent cells and establish PML-NBs as important regulatory sites for the incorporation of new H3.3 into chromatin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906242 | PMC |
http://dx.doi.org/10.4161/cc.26988 | DOI Listing |
Blood Cancer Discov
January 2025
Princess Máxima Center, Utrecht, Netherlands.
In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.
Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.
Stem Cell Rev Rep
January 2025
Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.
View Article and Find Full Text PDFPflugers Arch
January 2025
School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.
The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.
Common treatment approaches for triple-negative breast cancer (TNBC) are associated with severe side effects due to the unfavorable biodistribution profile of potent chemotherapeutics. Here, we explored the potential of TNBC-targeting aptamer-decorated porous silicon nanoparticles (pSiNPs) as targeted nanocarriers for TNBC. A "salt-aging" strategy was employed to fabricate a TNBC-targeting aptamer functionalized pSiNP that was highly colloidally stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!