Dictamnine is an herbal ingredient isolated from the root bark of Dictamnus dasycarpus Turcz. (Rutaceae). The present study was aimed at the development of an ultra-high performance liquid chromatography-tandem mass spectrometry method to quantify the concentration of dictamnine in rat plasma and tissues for the in vivo pharmacokinetics, tissue distribution and excretion study. Biological samples were processed with protein precipitation. Skimmianine was chosen as internal standard. The chromatographic separation was carried out on a Thermo Syncronis C18 column (2.1mm×50mm, 1.7μm) with an isocratic mobile phase consisting of methanol and 0.1% formic acid water (75:25, v/v). The detection was accomplished by using positive ion electrospray ionization in multiple reaction monitoring (MRM) mode. The MS/MS ion transitions were monitored at m/z 200.0→129.0 for dictamnine and 260.3→227.1 for IS, respectively. An excellent linearity was observed over the concentration range from 0.5 to 250ng/mL. The lower limit of quantification (LLOQ) was 0.5ng/mL for dictamnine. The developed method was rapid, accurate, and highly sensitive and selective. It was successfully applied to the in vivo pharmacokinetics, tissue distribution and excretion study of dictamnine in rats after oral or intravenous administration of dictamnine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2013.10.025 | DOI Listing |
Curr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFInt J Toxicol
January 2025
Chemical and Preclinical Safety Department, Global Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany.
The therapeutic window of antibody drug-conjugates (ADC) remains challenging due to safety issues such as interstitial lung disease (ILD) observed with specific deruxtecan-based ADCs. To avoid ILD, we designed M9140 by conjugating the maleimide-containing hydrophilic β-glucuronide linker to exatecan and our anti-CEACAM5 (CarcinoEmbryonic Antigen-related Cell Adhesion Molecule 5) specific antibody. Following repeated iv-infusion at 3 to 30 mg/kg of M9140 every 3 weeks, the pathological findings obtained in cynomolgus monkeys were confined to gastrointestinal and hematolymphoid tissues and resembled the toxicity of exatecan.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
Breast cancer (BC) is a substantial reason for cancer-related mortality among women across the globe. Anastrozole (ANS) is an effective orally administered hormonal therapy for estrogen+ (ER+) BC treatment. However, several side effects and pharmacokinetic limitations restricted its uses in BC treatment.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
Introduction: MRTX1133 is a selective and reversible small molecule inhibitor of KRAS (G12D), which significantly delays the progression of solid tumors. However, no study on the absorption, distribution, and excretion of MRTX1133.
Methods: A fast ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry method was developed for the determination of MRTX1133 in rat plasma, tissue homogenate, and urine.
Alzheimers Dement (N Y)
December 2024
Eli Lilly and Company Indianapolis Indiana USA.
Introduction: The aggregation and spread of hyperphosphorylated, pathological tau in the human brain is hypothesized to play a key role in Alzheimer's disease (AD) as well as other neurogenerative tauopathies. O-GlcNAcylation, an important post-translational modification of tau and many other proteins, is significantly decreased in brain tissue of AD patients relative to healthy controls. Increased tau O-GlcNAcylation has been shown to reduce tau pathology in mouse in vivo tauopathy models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!