Background: Lung cancer, especially non-small cell lung cancer, is a leading cause of malignant tumor death worldwide. Understanding the mechanisms employed by the main regulators, such as microRNAs (miRNAs) and transcription factors (TFs), still remains elusive. The patterns of their cooperation and biological functions in the synergistic regulatory network have rarely been studied.

Results: Here, we describe the first miRNA-TF synergistic regulation network in human lung cancer. We identified important regulators (MYC, NFKB1, miR-590, and miR-570) and significant miRNA-TF synergistic regulatory motifs by random simulations. The two most significant motifs were the co-regulation of miRNAs and TFs, and TF-mediated cascade regulation. We also developed an algorithm to uncover the biological functions of the human lung cancer miRNA-TF synergistic regulatory network (regulation of apoptosis, cellular protein metabolic process, and cell cycle), and the specific functions of each miRNA-TF synergistic subnetwork. We found that the miR-17 family exerted important effects in the regulation of non-small cell lung cancer, such as in proliferation and cell cycle regulation by targeting the retinoblastoma protein (RB1) and forming a feed forward loop with the E2F1 TF. We proposed a model for the miR-17 family, E2F1, and RB1 to demonstrate their potential roles in the occurrence and development of non-small cell lung cancer.

Conclusions: This work will provide a framework for constructing miRNA-TF synergistic regulatory networks, function analysis in diseases, and identification of the main regulators and regulatory motifs, which will be useful for understanding the putative regulatory motifs involving miRNAs and TFs, and for predicting new targets for cancer studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843544PMC
http://dx.doi.org/10.1186/1752-0509-7-122DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
synergistic regulatory
20
mirna-tf synergistic
20
regulatory motifs
16
non-small cell
16
cell lung
16
regulatory network
12
regulatory
8
main regulators
8
biological functions
8

Similar Publications

Association of radiation-induced normal tissue toxicity with a high genetic risk for rheumatoid arthritis.

J Natl Cancer Inst

January 2025

Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom.

Purpose: Overlapping genes are involved with rheumatoid arthritis (RA) and DNA repair pathways. Therefore, we hypothesised that patients with a high polygenic risk score (PRS) for RA will have an increased risk of radiotherapy (RT) toxicity given the involvement of DNA repair.

Methods: Primary analysis was performed on 1494 prostate cancer, 483 lung cancer and 1820 breast cancer patients assessed for development of RT toxicity in the REQUITE study.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the possibility of defining new imaging criteria to predict less-invasive clinical (c)-stage IA2-IA3 solid predominant lung adenocarcinoma using the maximum standardized uptake value (SUVmax) as the cutoff value.

Methods: Consecutive 364 patients who underwent anatomical resection with mediastinal lymphadenectomy and positron emission tomography for c-stage IA2-IA3 solid predominant lung adenocarcinoma with a tumor diameter < 3 cm were retrospectively evaluated. Less-invasive cancer was defined as the absence of nodal involvement, lymphovascular or pleural invasion, or spread through air spaces.

View Article and Find Full Text PDF

Purpose: To explore the dynamic and parametric characteristics of [F]F-FAPI-42 PET/CT in lung cancers.

Methods: Nineteen participants with newly diagnosed lung cancer underwent 60-min dynamic [F]F-FAPI-42 PET/CT. Time-activity curves (TAC) were generated for tumors and normal organs, with kinetic parameters (K, K, K, K, K) calculated.

View Article and Find Full Text PDF

In the preliminary screening, falcarinol and falcarindiol, C polyacetylenes from the roots of Glehnia littoralis F. Schmidt ex Miq (Umbelliferae), displayed cytotoxic activity both against oxaliplatin-sensitive/resistant colorectal cancer (CRC) and gefitinib-sensitive/resistant non-small cell lung cancer (NSCLC) cells. In this study, 13 polyacetylenes including a new (3R,11R)-11-hyroxy-isofalcarinolone (1) were isolated from G.

View Article and Find Full Text PDF

Hyperprogressive disease induced by PD-1 inhibitor monotherapy in lung adenocarcinoma with HER2 exon 20 insertion: report of two cases and review of literature.

Discov Oncol

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.

Monotherapy with anti-programmed cell death protein 1 (PD-1) monoclonal antibody has been approved for the treatment of advanced non-small cell lung cancer with positive programmed cell death-ligand 1 (PD-L1) expression and oncogene wild type, which revealed survival benefit compared with chemotherapy. Nevertheless, certain patients develop rapid progression on anti-PD-1 inhibitor monotherapy. This novel pattern is called hyperprogressive disease (HPD), and the underlying mechanism and molecular characteristics still leaves not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!