Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Curcuma comosa Roxb. is widely used as a gynaecological traditional medicine in South-East Asia and recent behavioral studies have shown that C. comosa extract significantly improved the spatial memory in rats. The present study investigated the protective effects of Curcuma comosa hexane extract on the ethanol (EtOH)-induced oxidation in rat brains. Young female Wistar rats were given 20% of EtOH intraperitoneally to induce the oxidative stress. Subsequently, C. comosa hexane extract was intraperitoneally co-administered at the doses of 100 and 250 mg kg(-1) b.wt. to the EtOH-induced rats for 14 days. The neuron densities of CA1, CA3 and CA4 areas of the hippocampus were counted and the activities of hippocampal Catalase (CAT), Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) were determined. EtOH significantly decreased the neuron densities in Cornu Ammonis (CA), including CA1 and CA3 areas; however, the decrease was prevented by C. comosa co-administration. EtOH administration also increased the CAT and GPx activities in the hippocampus which were reversed by C. comosa co-administration. Moreover, C. comosa administration increased the SOD activity in a dose-dependent manner in the EtOH treated groups. C. comosa prevented the neuron loss in the hippocampus caused by EtOH. The possible neural protective mechanism may involve with the changes in activities of the antioxidant enzymes in the hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3923/pjbs.2012.367.373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!