Rotavirus (RV) replication occurs in cytoplasmic inclusions called viroplasms whose formation requires the interactions of RV proteins NSP2 and NSP5; however, the specific role(s) of NSP2 in viroplasm assembly remains largely unknown. To study viroplasm formation in the context of infection, we characterized two new monoclonal antibodies (MAbs) specific for NSP2. These MAbs show high-affinity binding to NSP2 and differentially recognize distinct pools of NSP2 in RV-infected cells; a previously unrecognized cytoplasmically dispersed NSP2 (dNSP2) is detected by an N-terminal binding MAb, and previously known viroplasmic NSP2 (vNSP2) is detected by a C-terminal binding MAb. Kinetic experiments in RV-infected cells demonstrate that dNSP2 is associated with NSP5 in nascent viroplasms that lack vNSP2. As viroplasms mature, dNSP2 remains in viroplasms, and the amount of diffuse cytoplasmic dNSP2 increases. vNSP2 is detected in increasing amounts later in infection in the maturing viroplasm, suggesting a conversion of dNSP2 into vNSP2. Immunoprecipitation experiments and reciprocal Western blot analysis confirm that there are two different forms of NSP2 that assemble in complexes with NSP5, VP1, VP2, and tubulin. dNSP2 associates with hypophosphorylated NSP5 and acetylated tubulin, which is correlated with stabilized microtubules, while vNSP2 associates with hyperphosphorylated NSP5. Mass spectroscopy analysis of NSP2 complexes immunoprecipitated from RV-infected cell lysates show both forms of NSP2 are phosphorylated, with a greater proportion of vNSP2 being phosphorylated compared to dNSP2. Together, these data suggest that dNSP2 interacts with viral proteins, including hypophosphorylated NSP5, to initiate viroplasm formation, while viroplasm maturation includes phosphorylation of NSP5 and vNSP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911676PMC
http://dx.doi.org/10.1128/JVI.03022-13DOI Listing

Publication Analysis

Top Keywords

nsp2
11
viroplasm assembly
8
viroplasm formation
8
rv-infected cells
8
dnsp2
8
binding mab
8
vnsp2 detected
8
forms nsp2
8
hypophosphorylated nsp5
8
nsp5
7

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Since the first isolation of the porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) BJEU06-1 strain from a Beijing pig farm in 2006, more and more PRRSV-1 isolates have been identified in China. In this study, we performed the routine detection of PRRSV-1 using 1521 clinical samples collected in 12 provinces/cities from February 2022 to May 2024. Only three lung samples from severely diseased piglets collected in January 2024 were detected as PRRSV-1-positive (0.

View Article and Find Full Text PDF

Enhanced Porcine Reproductive and Respiratory Syndrome Virus Replication in Nsp4- or Nsp2-Overexpressed Marc-145 Cell Lines.

Vet Sci

January 2025

Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.

Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry. The killed PRRSV vaccine has been reported to be safe and could elicit humoral responses. The killed PRRSV vaccine with a high viral antigen load combined with robust adjuvants could provide good protection against the infection.

View Article and Find Full Text PDF

Revealing a novel GI-19 lineage infectious bronchitis virus sub-genotype with multiple recombinations in South Korea using whole-genome sequencing.

Infect Genet Evol

January 2025

Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea. Electronic address:

Infectious bronchitis (IB), caused by the infectious bronchitis virus (IBV), is a highly contagious chicken disease, causing economic losses worldwide. New IBV strains and variants continue to emerge despite using inactivated and live-attenuated vaccines to prevent or control IB. In this study, the S1 genes of 46 IBV strains, isolated from commercial chicken flocks between 2003 and 2024 in Korea were sequenced and genetically characterized.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!