Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain-machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without knowledge of noise correlations in many more situations than previously thought.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618421 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0357-13.2013 | DOI Listing |
Front Genet
December 2024
School of information engineering, Jingdezhen Ceramic University, Jingdezhen, China.
The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.
View Article and Find Full Text PDFIt has been shown that light speckle fluctuations provide a means for noninvasive measurements of cerebral blood flow index (CBFi). While conventional Diffuse Correlation Spectroscopy (DCS) provides marginal brain sensitivity for CBFi in adult humans, new techniques have recently emerged to improve diffuse light throughput and thus, brain sensitivity. Here we further optimize one such approach, interferometric diffusing wave spectroscopy (iDWS), with respect to number of independent channels, camera duty cycle and full well capacity, incident power, noise and artifact mitigation, and data processing.
View Article and Find Full Text PDFThe Circle of Willis (CW) is a critical cerebrovascular structure that supports collateral blood flow to maintain brain perfusion and compensate for eventual occlusions. Increased tortuosity of highrisk vessels within the CW has been implicated as a marker in the progression of cerebrovascular diseases especially in structures like the internal carotid artery (ICA). This is partly due to age-related plaque deposition or arterial stiffening.
View Article and Find Full Text PDFArch Dis Child Fetal Neonatal Ed
January 2025
Centre for Perinatal Research, University of Nottingham, School of Medicine, Nottingham, UK
Objective: To assess the utility of a bespoke smartphone app to map noise and vibration exposure across neonatal road ambulance journeys.
Design And Setting: Prospective observational study of ambulance journeys across a large UK neonatal transport service. Smartphones, with an in-house developed app, were secured to incubator trolleys to collect vibration and noise data for comparison with international standards.
Phys Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Chow Yei Ching 506, Hong Kong, 999077, HONG KONG.
. The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!