: Acetylcholinesterase (AChE) is used as a specific biomarker of the effects of organophosphorous (OP) and carbamate (C) insecticides on the coastal marine environment. Studies of mixtures (by pairs) of five of these substances showed cumulative, synergistic inhibitory effects in all cases. The strongest synergy was observed in organophosphate-carbamate mixtures (OP-C) and the least in mixtures of substances of the same type (OP-OP, C-C). The intensity of the synergistic effect was directly related to the length of time the enzyme was incubated with the inhibitory mixtures. Among the major organic contaminants of the marine environment, DDT and lindane (organochlorines), as well as atrazine and isoproturon, are not AChE inhibitors and had no effect on the inhibitory action of the OP and C insecticides tested. Among contaminants of metallic origin, zinc chloride, cadmium chloride, tributyltin chloride and methylmercury did not inhibit AChE at the concentrations measured in the different marine compartments (water, sediment, living matter). Mercuric chloride and arsenite had a weak inhibitory action in certain organisms. Zinc chloride, cadmium chloride and arsenic enhanced the inhibitory effects of some OP and C insecticides. The dragonet (Callionymus lyra) proved to be a particularly sensitive target species for monitoring pollutant effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00116345DOI Listing

Publication Analysis

Top Keywords

marine environment
8
inhibitory effects
8
inhibitory action
8
zinc chloride
8
chloride cadmium
8
cadmium chloride
8
chloride
6
inhibitory
5
joint action
4
action combinations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!