The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10096-013-2006-6DOI Listing

Publication Analysis

Top Keywords

matrix-assisted laser
8
laser desorption/ionisation
8
desorption/ionisation time-of-flight
8
time-of-flight mass
8
mass spectrometry
8
spectrometry maldi-tof
8
university hospitals
8
hospitals brussels
8
maldi-tof system
8
feasibility matrix-assisted
4

Similar Publications

Normalization Based on Shift and Ion Intensity in SALDI-TOFMS Imaging of Samples with Non-Horizontal Surface.

Mass Spectrom (Tokyo)

December 2024

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.

Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.

View Article and Find Full Text PDF

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Background: Lower respiratory tract infections (LRTIs) are the most common infections in humans accounting for significant morbidity and mortality. Management of LRTIs is complicated due to increasing antimicrobial resistance. This study investigated the prevalence and trends of antimicrobial resistance for bacteria isolated from respiratory samples of patients with LRTIs.

View Article and Find Full Text PDF

Background: Stutzerimonas is a recently proposed genus comprising strains formerly classified as Pseudomonas stutzeri. The genus includes at least 16 identified species. Stutzerimonas nitrititolerans, previously known as Pseudomonas nitrititolerans, was initially isolated from a bioreactor.

View Article and Find Full Text PDF

Insights into proliferative glomerulonephritis with monoclonal immunoglobulin deposits - is it really monoclonal or not?

Curr Opin Nephrol Hypertens

January 2025

Control of the immune response B and lymphoproliferation, CNRS UMR 7276, INSERM UMR 1262, University of Limoges, Centre de référence de l'amylose AL et autres maladies par dépôts d'immunoglobuline monoclonale, Limoges, France; Service de néphrologie et Centre National de référence amylose AL et autres maladies à dépôts d'immunoglobulines monoclonales, Centre Hospitalier Universitaire, Université de Poitiers, Poitiers, France.

Purpose Of Review: Proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID), is a disease defined by the presence of glomerulonephritis with nonorganized mono-isotypic immunoglobulin (Ig) deposits. This review will discuss the pathogenesis of PGNMID and address novel techniques for detection of monoclonal Ig and pathologic B-cell clones and for distinguishing monoclonal from oligoclonal Ig deposits.

Recent Findings: Because of low detection rate of circulating monoclonal Ig and nephritogenic B-cell clones and emerging reports of PGNMID-IgG in children, it has been recently argued that many PGNMID-IgG3 cases may not be monoclonal lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!