Treatment of type 1 myotonic dystrophy by engineering site-specific RNA endonucleases that target (CUG)(n) repeats.

Mol Ther

Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Macro Science Solutions LLP, Chapel Hill, North Carolina, USA. Electronic address:

Published: February 2014

Myotonic dystrophy type 1 (DM1) is caused by the expansion of (CTG)n in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene, which is transcribed as (CUG)n repeats that accumulate in the nucleus. The RNA repeats specifically sequester or change the expression levels of several RNA-binding proteins, leading to aberrant splicing of many target genes. In this study, we developed artificial site-specific RNA endonucleases (ASREs) that specifically bind and cleave (CUG)n repeats RNA. We have generated one ASRE that can target the expanded RNA repeats in DM1 patient cells and specifically degrade the pathogenic DMPK messenger RNAs with minimal effect on wild-type alleles. Such ASRE treatment significantly decreased the number of nuclear foci in DM1 patient cells and can reverse the missplicing of many genes affected in DM1 patients. Taken together, the application of ASRE provides a new route of gene therapy for DM1 treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916045PMC
http://dx.doi.org/10.1038/mt.2013.251DOI Listing

Publication Analysis

Top Keywords

cugn repeats
12
myotonic dystrophy
8
site-specific rna
8
rna endonucleases
8
rna repeats
8
dm1 patient
8
patient cells
8
rna
5
repeats
5
dm1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!