Cationic antimicrobial peptides are promising sources for novel therapeutic agents against multi-drug-resistant bacteria. HHC-36 (KRWWKWWRR) is a simple but effective antimicrobial peptide with similar or superior activity compared with several conventional antibiotics. In this biophysical study, unique conformational properties of this peptide and some of its analogs as well as its interaction with lipid membranes are investigated in detail. Circular dichroism (CD) and molecular dynamics modeling studies of HHC-36 in different environments reveal a dynamic amphipathic structure composed of competing turn conformations with free energies lower than that of the unfolded state, implying a strong influence of tryptophan interactions in formation of the turns. CD spectra and gel electrophoresis also show strong evidence of self-association of this peptide in aqueous milieu and interaction with both neutrally and negatively charged lipid membrane systems. Isothermal titration calorimetry and acrylamide fluorescence quenching experiments emphasize the preference of HHC-36 for negatively charged vesicles. In addition, dye leakage experiments suggest that this peptide functions through a surface-associated mechanism with weak lytic activity against bacterial model membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp4096985DOI Listing

Publication Analysis

Top Keywords

cationic antimicrobial
8
antimicrobial peptide
8
negatively charged
8
peptide
5
dynamic turn
4
turn conformation
4
conformation short
4
short tryptophan-rich
4
tryptophan-rich cationic
4
peptide interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!