We demonstrate tunable electrical and thermal conductivities through freezing rate control in solution-based nanocomposites. For a prototypical suspension of 1 vol % multilayer graphene suspended in hexadecane, the solid-liquid electrical conductivity contrast ratio can be tuned from 1 to 4.5 orders of magnitude for freezing rates between 10(2) and 10(-3) °C/min. We hypothesize that this dramatic variation stems from ice-templating, whereby crystal growth drives nanoparticles into concentrated intercrystal regions, increasing the percolation pathways and reducing the internanoparticle electrical resistance. Optical microscopy supports the ice-templating hypothesis, as these dramatic property changes coincide with changing crystal size. Under the same range of freezing rates, the nanocomposite solid-liquid thermal conductivity contrast ratio varies between 2.3 and 3.0, while pure hexadecane's varies between 2.1 and 2.6. The nanocomposite's thermal conductivity contrast ratios and solid phase enhancements are greater than effective medium theory predictions. We suggest this is due to ice-templating, consistent with our electrical measurements, as well as nanoparticle-induced molecular alignment of alkanes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn404935mDOI Listing

Publication Analysis

Top Keywords

conductivity contrast
12
tunable electrical
8
electrical thermal
8
multilayer graphene
8
freezing rate
8
rate control
8
contrast ratio
8
freezing rates
8
thermal conductivity
8
thermal
4

Similar Publications

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Unlabelled: Artificial intelligence (AI) is constantly improving the quality of medical procedures. Despite the application of AI in the healthcare industry, there are conflicting opinions among professionals, and limited research on its practical application in Saudi Arabia was conducted.

Aim: To assess the nurses' knowledge regarding the application of AI in practice at one of the Ministry of Health hospitals in Saudi Arabia.

View Article and Find Full Text PDF

is a major causative agent of streptococcosis in Nile tilapia () and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure.

View Article and Find Full Text PDF

Alopecia areata (AA) is a common non-scarring hair loss condition whose specific pathogenesis is not yet fully understood. In children, AA often co-occurs with atopic dermatitis (AD), complicating treatment. Here, we report the case of a child with myasthenia gravis who had severe AA and moderate AD.

View Article and Find Full Text PDF

Background: Individuals with first-episode psychosis (FEP) face an increased risk of physical comorbidities, notably cardiovascular diseases, metabolic disorders, respiratory disorders, and certain types of cancer. Previous reviews report pooled physical health prevalence from chronic psychosis and FEP groups. By contrast, this review will focus on antipsychotic-naïve FEP cohorts and incorporate data from observational longitudinal studies and antipsychotic intervention studies to understand the progression of physical health comorbidities from the onset to later stages of psychosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!