We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea.
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFTalanta
January 2025
Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.
The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!