Bluetongue virus (BTV), the aetiological agent of bluetongue (BT), is a small (about 70 nm in diameter) icosahedral virus with a genome composed of ten linear segments of double-stranded RNA (dsRNA), which is packaged within an icosahedral nucleocapsid composed of seven structural proteins. The BTV genome evolves rapidly via genetic drift, reassortment of genome segments (genetic shift) and intragenic recombination. This evolution, and random fixation of quasispecies variants during transmission of BTV between susceptible animals and vectors appear to be the main mechanism leading to the observed genetic diversity amongst BTV field strains. The individual BTV gene segments evolve independently of one another by genetic drift in a host-specific fashion, generating quasispecies populations in both ruminant and insect hosts. Reassortment of BTV genes is responsible for genetic shift among strains of BTV, and has been demonstrated after infection of either the ruminant host or insect vector with different strains or serotypes of BTV. Intragenetic recombination, whereby mosaic genes are generated from the "splicing" together of homologous genes from different ancestral viral strains, has been demonstrated for BTV. The genetic variation of BTV is likely responsible for differences in the virulence and other phenotypic properties of individual field strains of the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2478/pjvs-2013-0086 | DOI Listing |
Heliyon
January 2025
Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China.
Trifluralin (FLL) is extensively used in rapeseed fields in the Qinghai-Tibet Plateau (QTP) region. However, the degradation kinetics of FLL in this area and its impact on environmental microbial communities are not yet known. To investigate the degradation patterns and ecological benefits of FLL, this study established a comprehensive method for detecting FLL residues and selected efficient degrading bacterial strains.
View Article and Find Full Text PDFLife Med
February 2024
CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
In recent years, the world has faced significant challenges with the coronavirus disease 2019 (COVID-19) pandemic, as well as other infectious diseases such as Zika and Ebola. Furthermore, the rapid rise of non-communicable diseases such as diabetes, heart disease, and cancer has placed tremendous strain on healthcare resources and systems. Unfortunately, advancements in drug development, diagnostics, and therapeutics have struggled to keep pace with the emergence and progression of diseases, necessitating the exploration of new technologies for the discovery and development of biomedicines and biotherapies.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil.
Background: Crocidosema aporema (Walsingham 1914) has historically been the main bud borer species in soybean in Brazil; however, a recent study reported that this species is not C. aporema but an undescribed species. In recent seasons, injury by Crocidosema sp.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
Background: Transfemoral osseointegrated prostheses, like other uncemented prostheses experience the risk of aseptic loosening and post-operative periprosthetic fractures, with an incidence between 3% and 30%. To date, however, osseointegrated off-the-shelf prostheses are manufactured in a limited number of sizes, and some patients do not meet the strict eligibility criteria of commercial devices. A customized osseointegrated stem was developed and a pre-clinical in vitro investigation of the stem was performed, to evaluate its biomechanical performance.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!