The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806155PMC
http://dx.doi.org/10.1155/2013/797310DOI Listing

Publication Analysis

Top Keywords

panax ginseng
16
ginseng extracts
12
atherosclerosis-related genes
12
protective effects
12
ginseng
8
downregulation atherosclerosis-related
8
vascular protective
8
genes altered
8
extracts restore
4
restore high-glucose
4

Similar Publications

Understanding the influence of plant genetic factors on rhizosphere microbiome assembly in .

Front Microbiol

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Introduction: Functional rhizosphere microbiomes (FRM) are critical for plant health and yield. However, the ecological succession of FRM and their links to plant genetic factors across the life cycle of perennial plants remain poorly understood.

Methods: This study profiled FRM, including plant-beneficial bacteria (PBB) and fungal plant pathogens (FPP), across different developmental stages of .

View Article and Find Full Text PDF

Immobilization of β-glucosidase and β-xylosidase on inorganic nanoparticles for glycosylated substances conversion.

Int J Biol Macromol

December 2024

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China. Electronic address:

There are abundant glycosylated substances such as cellulose, hemicellulose, and phytochemical glycosides in plants, which could be converted into functional chemicals such as monosaccharides, oligosaccharides, and bioactive aglycones by cleavage of glycosidic bonds using glycoside hydrolases (GHs). Among those GHs, β-glucosidase and β-xylosidase are the rate-limiting enzymes for degrading cellulose and hemicellulose, respectively, and can convert a variety of glycosylated substances. These two enzymes play important roles in the high value use of plant resources and have great potential applications.

View Article and Find Full Text PDF

Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review.

Arch Toxicol

December 2024

College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.

Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C.

View Article and Find Full Text PDF

Introduction: The biological activities of osthole have been widely reported in recent years. However, few studies have been conducted on osthole in agriculture, and its effects on plant growth have little been reported.

Methods: Three experimental treatments were set up in this experiment: blank control (CK), osthole (CLS), and (LKWS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!