Acute melioidosis may present as localised or septicaemic infections and can be fatal if left untreated. Burkholderia pseudomallei resistant to antibiotics used for the treatment of melioidosis had been reported. The aim of this study was to determine the in vitro antibiotic susceptibility patterns of Burkholderia pseudomallei isolated in Malaysia to a panel of antibiotics used for the treatment of melioidosis and also to potential alternative antibiotics such as tigecycline, ampicillin/sulbactam, and piperacillin/tazobactam. A total of 170 Burkholderia pseudomallei isolates were subjected to minimum inhibitory concentration determination using E-test method to eleven antibiotics. All isolates were sensitive to meropenem and piperacillin/tazobactam. For ceftazidime, imipenem, amoxicillin/clavulanic acid, and doxycycline resistance was observed in 1 isolate (0.6%) for each of the antibiotics. Trimethoprim/sulfamethoxazole resistance was observed in 17 (10%) isolates. For other antibiotics, ampicillin/sulbactam, chloramphenicol, tigecycline, and ciprofloxacin resistance were observed in 1 (0.6%), 6 (3.5%), 60 (35.3%) and 98 (57.7%) isolates respectively. One isolate B170/06 exhibited resistance to 4 antibiotics, namely, ciprofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and tigecycline. In conclusion, the Malaysian isolates were highly susceptible to the current antibiotics used in the treatment of melioidosis in Malaysia. Multiple resistances to the antibiotics used in the maintenance therapy are the cause for a concern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3803121 | PMC |
http://dx.doi.org/10.1155/2013/121845 | DOI Listing |
Am J Trop Med Hyg
January 2025
Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.
Melioidosis is a neglected tropical infection caused by the Gram-negative bacterium Burkholderia pseudomallei, which is found in soil and water across tropical countries. The infection spectrum ranges from mild localized lesions to severe sepsis. The clinical presentation, severity, and outcome are influenced by the route of infection, bacterial load, strain virulence, and specific virulence genes of B.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines.
Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Department of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
Background: Melioidosis is a multisystem infectious disease caused by the environmental bacterium . Osteomyelitis (OM) and septic arthritis (SA) are uncommon primary presentations for melioidosis but important secondary foci, often requiring prolonged therapy and multiple surgeries. We characterized the epidemiology, presentation, treatment, and outcomes of patients from 24 years of the Darwin Prospective Melioidosis Study (DPMS).
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Infectious Diseases, Kasturba Medical College Manipal, Manipal Academy of higher Education, Manipal, Karnataka, India, 576104.
Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to multiple classes of antibiotics and primarily affects immunocompromised individuals, such as those with poorly controlled diabetes or malignancies. In this case, a 58-y-old female farmer with poorly controlled diabetes (HbA1c of 11.4%), metastatic breast cancer with chemotherapy-induced pancytopenia and disseminated melioidosis showed no improvement despite receiving antibiotics and supportive care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!