Efficient calculation of the quasi-static electrical potential on a tetrahedral mesh and its implementation in STEPS.

Front Comput Neurosci

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Onna-son, Japan ; Theoretical Neurobiology, University of Antwerp Antwerp, Belgium.

Published: November 2013

We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810599PMC
http://dx.doi.org/10.3389/fncom.2013.00129DOI Listing

Publication Analysis

Top Keywords

quasi-static electrical
8
electrical potential
8
potential tetrahedral
8
implementation steps
8
e-field method
8
efficient calculation
4
calculation quasi-static
4
tetrahedral mesh
4
mesh implementation
4
steps describe
4

Similar Publications

Comparative Study on Hyperelastic Constitutive Models for the Static and Dynamic Behavior of Resilient Mounts.

Materials (Basel)

January 2025

School of Electrical & Control Engineering, Tongmyong University, Busan 48520, Republic of Korea.

Resilient mounts play a vital role in anti-vibration and shock-absorption systems, making precise estimation of their static and dynamic stiffness essential for ensuring optimal mechanical performance and effective design. This study investigates the behavior of resilient mounts by analyzing their static and dynamic stiffness characteristics through the application of various hyperelastic constitutive models. Seven hyperelastic models were reviewed and systematically compared using numerical simulations, experimental data, and analytical solutions.

View Article and Find Full Text PDF

Controlling the stability of monodisperse phospholipid-coated microbubbles by tuning their buckling pressure.

J Colloid Interface Sci

January 2025

BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands. Electronic address:

Hypothesis: Monodisperse phospholipid-coated microbubbles, with a size and resonance frequency tuned to the ultrasound driving frequency, have strong potential to enhance sensitivity, efficiency, and control in emerging diagnostic and therapeutic applications involving bubbles and ultrasound. A key requirement is that they retain their gas volume and shell material during physiologic pressure changes and withstand the overpressure during intravenous injection. The shell typically comprises a mixture of a phospholipid (e.

View Article and Find Full Text PDF

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.

View Article and Find Full Text PDF

Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.

View Article and Find Full Text PDF

Galvanized high-strength steel has emerged as a key focus in automotive lightweighting research. During resistance spot welding of galvanized steel, the phenomenon of liquid metal embrittlement (LME) can occur, which is characterized by the appearance of irregular cracks on the weld spot surface. However, the impact of LME cracks on the mechanical properties of joints remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!