Cells use signaling networks consisting of multiple interacting proteins to respond to changes in their environment. In many situations, such as chemotaxis, spatial and temporal information must be transmitted through the network. Recent computational studies have emphasized the importance of cellular geometry in signal transduction, but have been limited in their ability to accurately represent complex cell morphologies. We present a finite volume method that addresses this problem. Our method uses Cartesian cut cells and is second order in space and time. We use our method to simulate several models of signaling systems in realistic cell morphologies obtained from live cell images and examine the effects of geometry on signal transduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815654 | PMC |
http://dx.doi.org/10.2140/camcos.2010.5.31 | DOI Listing |
Unlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).
View Article and Find Full Text PDFElife
January 2025
Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.
Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric 'vocabulary', made by individually variable and sex-specific electric signals.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Bioengineering, University of California, Riverside, Riverside, CA, USA.
The pervasive model for a solvated, ion-filled nanopore is often a resistor in parallel with a capacitor. For conical nanopore geometries, here we propose the inclusion of a Warburg-like element, which is necessary to explain otherwise anomalous observations such as negative capacitance and low-pass filtering of translocation events (we term this phenomenon as Warburg filtering). The negative capacitance observed here has long equilibration times and memory (that is, mem-capacitance) at negative voltages.
View Article and Find Full Text PDFBiotechniques
January 2025
Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
Current dorsal skin flap window chambers with flat glass windows are compatible with optical coherence tomography (OCT) and multiphoton microscopy (MPM) imaging. However, light sheet fluorescence microscopy (LSFM) performs best with a cylindrical or spherical sample located between its two 90° objectives and when all sample materials have the same index of refraction (). A modified window chamber with a domed viewing window made from fluorinated ethylene propylene (FEP), with n similar to water and tissue, was designed.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!