AI Article Synopsis

  • The study investigates how β-cell growth increases in response to insulin resistance, particularly focusing on the role of certain molecular mechanisms in Wistar rats.
  • A specific nutrient mixture (glucose and Intralipid) was found to significantly boost β-cell proliferation in older rats, suggesting age plays a role in this developmental process.
  • The research highlights the importance of the FOXM1 transcription factor and EGFR signaling in promoting β-cell growth through mTOR activation when faced with excess nutrients.

Article Abstract

The cellular and molecular mechanisms underpinning the compensatory increase in β-cell mass in response to insulin resistance are essentially unknown. We previously reported that a 72-h coinfusion of glucose and Intralipid (GLU+IL) induces insulin resistance and a marked increase in β-cell proliferation in 6-month-old, but not in 2-month-old, Wistar rats. The aim of the current study was to identify the mechanisms underlying nutrient-induced β-cell proliferation in this model. A transcriptomic analysis identified a central role for the forkhead transcription factor FOXM1 and its targets, and for heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), a ligand of the EGF receptor (EGFR), in nutrient-induced β-cell proliferation. Phosphorylation of ribosomal S6 kinase, a mammalian target of rapamycin (mTOR) target, was increased in islets from GLU+IL-infused 6-month-old rats. HB-EGF induced proliferation of insulin-secreting MIN6 cells and isolated rat islets, and this effect was blocked in MIN6 cells by the EGFR inhibitor AG1478 or the mTOR inhibitor rapamycin. Coinfusion of either AG1478 or rapamycin blocked the increase in FOXM1 signaling, β-cell proliferation, and β-cell mass and size in response to GLU+IL infusion in 6-month-old rats. We conclude that chronic nutrient excess promotes β-cell mass expansion via a pathway that involves EGFR signaling, mTOR activation, and FOXM1-mediated cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931394PMC
http://dx.doi.org/10.2337/db13-0425DOI Listing

Publication Analysis

Top Keywords

β-cell proliferation
20
growth factor
12
β-cell mass
12
epidermal growth
8
β-cell
8
nutrient excess
8
increase β-cell
8
insulin resistance
8
nutrient-induced β-cell
8
6-month-old rats
8

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!