Testicular responsiveness to gonadotropic hormonein vitro and Leydig and Sertoli cell ultrastructure during pubertal development of male African catfish (Clarias gariepinus).

Fish Physiol Biochem

Department of Experimental Zoology, Research Group Comparative Endocrinology, University of Utrecht, Faculty Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands,

Published: June 1996

AI Article Synopsis

  • The study examined how gonadotropin affected testosterone production and cell structure in the testicles of male African catfish during puberty.
  • The weight of the testis increased significantly from under 1 mg to nearly 600 mg by the 28th week, indicating growth and development.
  • Initially, immature testicular cells were highly responsive to gonadotropin and produced high levels of androgens, but the response decreased when haploid germ cells appeared, despite overall testosterone output rising due to increased testis weight.
  • The structure of Leydig cells, responsible for steroid production, showed changes linked to maturation, while Sertoli cell structure remained largely unchanged throughout the study.

Article Abstract

The gonadotropin (GTH)-stimulated testicular androgen secretionin vitro and the ultrastructure of Leydig and Sertoli cells was studied during the pubertal development in male African catfish. Testicular weight increased from less than 1 mg in the ninth week of age to nearly 600 mg in the 28th week. Immature testes (stage I: spermatogonia) were highly sensitive to GTH and secreted very high amounts of androgens per mg of tissue. The secretion per mg tissue decreased gradually in stages II (spermatogonia and spermatocytes) and III (spermatogonia, spermatocytes, and spermatids), but precipitously in stage IV (all germ cell stages, including spermatozoa). However, due to the testicular weight gain, the total androgen output per pair of testes increased slightly in stage III and strongly in stage IV. The sensitivity to GTH decreased with the appearance of haploid germ cells in stage III. Leydig cells but not Sertoli cells showed the ultrastructural characteristics of steroid producing cells. Leydig cell morphology did not change in stages I-III, while in stage IV, more smooth endoplasmic reticulum was present. The ultrastructural characteristics of Sertoli cells did not change prominently. Thus, spermatogonial multiplication and spermatocyte formation takes place when the testicular steroidogenic system is highly active and responsive to GTH; whereas the differentiation of haploid germ cells is accompanied by a reduced responsiveness to GTH and by the secretion of several-fold lower androgen amounts per mg of tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01875575DOI Listing

Publication Analysis

Top Keywords

sertoli cells
12
leydig sertoli
8
pubertal development
8
development male
8
male african
8
african catfish
8
testicular weight
8
spermatogonia spermatocytes
8
stage iii
8
haploid germ
8

Similar Publications

Research progress on Sertoli cell secretion during spermatogenesis.

Front Endocrinol (Lausanne)

January 2025

Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.

View Article and Find Full Text PDF

Testicular Torsion in a 14-Year-Old with Sertoli Cell Granular Cell Change and Sertoli Nodules.

Fetal Pediatr Pathol

January 2025

Department of Pathology, Louisiana State University Health Science Center and Children's Hospital of New Orleans, New Orleans Children's Hospital, New Orleans, LA, USA.

Sertoli eosinophilic granular change and Sertoli cell nodules are incidental findings. This details focal Sertoli eosinophilic granular and Sertoli cell only changes coincident with Sertoli cell nodules in a pubertal testis with acute torsion and bell clapper deformity. A 14-year-old with bell clapper deformity underwent orchiectomy for torsion.

View Article and Find Full Text PDF

Hormonal Regulation of Urokinase- and Tissue-Type Plasminogen Activator in Mouse Sertoli Cells.

Mol Reprod Dev

January 2025

Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.

A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.

View Article and Find Full Text PDF

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!