Genetic markers were mapped in segregating progeny from a cross between two soybean (Glycine max (L.) Merr.) cultivars: 'Minsoy' (PI 27.890) and 'Noir 1' (PI 290.136). A genetic linkage map was constructed (LOD [Symbol: see text] 3), consisting of 132 RFLP, isozyme, morphological, and biochemical markers. The map defined 1550cM of the soybean genome comprising 31 linkage groups. An additional 24 polymorphic markers remained unlinked. A family of RFLP markers, identified by a single probe (hybridizing to an interspersed repeated DNA sequence), extended the map, linking other markers and defining regions for which other markers were not available.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00211039DOI Listing

Publication Analysis

Top Keywords

soybean glycine
8
glycine max
8
markers
6
genetic map
4
map soybean
4
max intraspecific
4
intraspecific cross
4
cross cultivars
4
cultivars 'minosy'
4
'minosy' 'noir
4

Similar Publications

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Variations in the proportions of the two major soybean [Glycine max (L.) Merr.] seed globulins, glycinin (11S) and β-conglycinin (7S), significantly affect the nutritional and functional properties of soy-based products, but comprehensive methods for the identification and quantification of individual subunits of these proteins are currently lacking.

View Article and Find Full Text PDF

Crop rotation effects on the population density of soybean soilborne pathogens under no-till cropping system.

Plant Dis

January 2025

USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;

Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!