Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transcranial direct current stimulation (tDCS) of the human sensorimotor cortex during physical rehabilitation induces plasticity in the injured brain that improves motor performance. Bi-hemispheric tDCS is a noninvasive technique that modulates cortical activation by delivering weak current through a pair of anodal-cathodal (excitation-suppression) electrodes, placed on the scalp and centered over the primary motor cortex of each hemisphere. To quantify tDCS-induced plasticity during motor performance, sensorimotor cortical activity was mapped during an event-related, wrist flexion task by functional near-infrared spectroscopy (fNIRS) before, during, and after applying both possible bi-hemispheric tDCS montages in eight healthy adults. Additionally, torque applied to a lever device during isometric wrist flexion and surface electromyography measurements of major muscle group activity in both arms were acquired concurrently with fNIRS. This multiparameter approach found that hemispheric suppression contralateral to wrist flexion changed resting-state connectivity from intra-hemispheric to inter-hemispheric and increased flexion speed (p<0.05). Conversely, exciting this hemisphere increased opposing muscle output resulting in a decrease in speed but an increase in accuracy (p<0.05 for both). The findings of this work suggest that tDCS with fNIRS and concurrent multimotor measurements can provide insights into how neuroplasticity changes muscle output, which could find future use in guiding motor rehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817936 | PMC |
http://dx.doi.org/10.1117/1.JBO.18.11.116003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!