Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss-of-function mutations in either PKD1 or PKD2 genes, which encode polycystin-1 (TRPP1) and polycystin-2 (TRPP2), respectively. Increased activity of the mammalian target of rapamycin (mTOR) pathway has been shown in PKD1 mutants but is less documented for PKD2 mutants. Clinical trials using mTOR inhibitors were disappointing, while the AMP-activated kinase (AMPK) activator, metformin is not yet tested in patients. Here, we studied the mTOR activity and its upstream pathways in several human and mouse renal cell models with either siRNA or stable knockdown and with overexpression of TRPP2. Our data reveal for the first time differences between TRPP1 and TRPP2 deficiency. In contrast to TRPP1 deficiency, TRPP2-deficient cells did neither display excessive activation of the mTOR-kinase complex nor inhibition of AMPK activity, while ERK1/2 and Akt activity were similarly affected among TRPP1- and TRPP2-deficient cells. Furthermore, cell proliferation was more pronounced in TRPP1 than in TRPP2-deficient cells. Interestingly, combining low concentrations of rapamycin and metformin was more effective for inhibiting mTOR complex 1 activity in TRPP1-deficient cells than either drug alone. Our results demonstrate a synergistic effect of a combination of low concentrations of drugs suppressing the increased mTOR activity in TRPP1-deficient cells. This novel insight can be exploited in future clinical trials to optimize the efficiency and avoiding side effects of drugs in the treatment of ADPKD patients with PKD1 mutations. Furthermore, as TRPP2 deficiency by itself did not affect mTOR signaling, this may underlie the differences in phenotype, and genetic testing has to be considered for selecting patients for the ongoing trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-013-1394-x | DOI Listing |
Pflugers Arch
August 2014
Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N I, Leuven, Belgium,
Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss-of-function mutations in either PKD1 or PKD2 genes, which encode polycystin-1 (TRPP1) and polycystin-2 (TRPP2), respectively. Increased activity of the mammalian target of rapamycin (mTOR) pathway has been shown in PKD1 mutants but is less documented for PKD2 mutants. Clinical trials using mTOR inhibitors were disappointing, while the AMP-activated kinase (AMPK) activator, metformin is not yet tested in patients.
View Article and Find Full Text PDFJ Am Soc Nephrol
July 2008
Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
TRPP2, also known as polycystin-2, is a calcium permeable nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease but has also been implicated in the regulation of cardiac development, renal tubular differentiation, and left-to-right (L-R) axis determination. For obtaining further insight into how TRPP2 exerts tissue-specific functions, this study took advantage of PACS-dependent trafficking of TRPP2 in zebrafish larvae. PACS proteins recognize an acidic cluster within the carboxy-terminal domain of TRPP2 that undergoes phosphorylation and mediate retrieval of TRPP2 to the Golgi and endoplasmic reticulum (ER).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!