Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5'-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron-exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5' and 3' ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887541 | PMC |
http://dx.doi.org/10.1534/g3.113.008524 | DOI Listing |
Sci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
J R Soc Interface
January 2025
Faculty of Information Technology, University of Jyväskylä, Jyvaskyla, Finland.
The design of photobioreactors for microalgae cultivation aims to achieve an architecture that allows the most efficient photosynthetic growth. The availability of light at wavelengths that are important for photosynthesis is therefore particularly crucial for reactor design. While testing different reactor types in practice is expensive, simulations could effectively limit the range of material and reactor design options.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFPhysiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFMicrob Ecol
January 2025
IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!