Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on the use of layer-by-layer (LbL) hydrogels, composed of amphiphilic polymers that undergo reversible collapse-dissolution transition in solutions as a function of pH, to induce sharp, large-amplitude wetting transition at microstructured surfaces. Surface hydrogels were composed of poly(2-alkylacrylic acids) (PaAAs) of varied hydrophobicity, i.e., poly(methacrylic acid) (PMAA), poly(2-ethylacrylic acid) (PEAA), poly(2-n-propylacrylic acid) (PPAA) and poly(2-n-butylacrylic acid) (PBAA). When deposited at a micropillar-patterned silicon substrate, hydrophilic PMAA LbL hydrogels supported complete surface wetting (contact angle, CA, of 0°), whereas PEAA, PPAA, and PBAA ultrathin coatings supported large-amplitude wetting transitions, with CA changes from 110 to 125° at acidic to 0° at basic pH values, and the transition pH increasing from 6.2 to 8.4 with increased polyacid hydrophobicity. At acidic pHs, droplets showed a large hysteresis in CA (a "sticky droplet" behavior), and remained in the Wenzel state. The fact that CA changes for wetting-nonwetting transitions occurred at values close to physiologic pH makes these coatings promising for controlling flow and bioadhesion using external stimuli. Finally, we show that the surface wettability transitions can be used to detect positively charged analytes (such as gentamicin) in solution via large changes in CA associated with adsorption of analytes within the hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403944m | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!