A novel method for the assessment of targeted PEI-based nanoparticle binding based on a static surface plasmon resonance system.

Anal Chem

Rudolf-Boehm-Institute of Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.

Published: July 2014

The delivery of nucleic acids is a major hurdle in gene therapy or therapeutic gene knockdown, and the development of intelligent and safe nanoparticles as carrier systems is thus under intense investigation. The introduction of ligands for their targeted delivery is of major interest. Here, we describe a novel approach for the analysis of the binding properties of antibody-functionalized nanoparticles, using surface plasmon resonance (SPR) in a static cuvette system. By chemical coupling of the Epidermal Growth Factor Receptor (EGFR)-specific antibody cetuximab to poly(ethylene imine) (PEI) via a PEG-spacer and subsequent DNA or siRNA complexation, we generated targeted nanoplexes with low surface charge. Antibody-mediated uptake into EGFR overexpressing cells was observed. SPR measurements with use of a novel, protein A-based sandwich system for the immobilization of the target receptor in its correct steric orientation allowed the analysis of the specific PEI-PEG-cetuximab binding to EGFR and the determination of binding affinities. Importantly, our cuvette-based SPR assay system was also suitable for the monitoring of ligand-mediated nanoparticle binding, without convection or shear stress. We conclude that our SPR sandwich system allows the precise analysis of the binding of ligand-functionalized nanoparticles in real-time, and we thus establish SPR for the in vitro evaluation of ligand modifications for generating targeted nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac402001qDOI Listing

Publication Analysis

Top Keywords

nanoparticle binding
8
surface plasmon
8
plasmon resonance
8
analysis binding
8
sandwich system
8
binding
6
system
5
spr
5
novel method
4
method assessment
4

Similar Publications

Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.

Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.

View Article and Find Full Text PDF

Carbapenem-Resistant Adherence to Magnetic Nanoparticles.

Nanomaterials (Basel)

December 2024

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.

Carbapenem-resistant (CRE) is an emerging global concern. Specifically, carbapenemase-producing (CP) strains in CRE have recently been found in clinical, environmental, and food samples worldwide, causing many hospitalizations and deaths. Their rapid identification and characterization are paramount in control, management options, and treatment choices.

View Article and Find Full Text PDF

Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.

View Article and Find Full Text PDF

The activated carbon from marigold flowers (MG) was used to make an unlabeled electrochemical immunosensor to determine prostate cancer. MG was synthesized by hydrothermal carbonization and pyrolysis. MG had a large surface area, was highly conductive, and biocompatible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!