Alveolar type (AT)I and ATII cells are central to maintaining normal alveolar fluid homeostasis. When disrupted, they contribute to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome. Research on ATII cells has been limited by the inability to propagate primary cells in vitro to study their specific functional properties. Moreover, primary ATII cells in vitro quickly transdifferentiate into nonproliferative "ATI-like" cells under traditional culture conditions. Recent studies have demonstrated that normal and tumor cells grown in culture with a combination of fibroblast (feeder cells) and a pharmacological Rho kinase inhibitor (Y-27632) exhibit indefinite cell proliferation that resembled a "conditionally reprogrammed cell" phenotype. Using this coculture system, we found that primary human ATII cells (1) proliferated at an exponential rate, (2) established epithelial colonies expressing ATII-specific and "ATI-like" mRNA and proteins after serial passage, (3) up-regulated genes important in cell proliferation and migration, and (4) on removal of feeder cells and Rho kinase inhibitor under air-liquid interface conditions, exhibited bioelectric and volume transport characteristics similar to freshly cultured ATII cells. Collectively, our results demonstrate that this novel coculture technique breaks the in vitro ATII cell proliferation barrier while retaining cell-specific functional properties. This work will allow for a significant increase in studies designed to elucidate ATII cell function with the goal of accelerating the development of novel therapies for alveolar diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068919 | PMC |
http://dx.doi.org/10.1165/rcmb.2013-0071OC | DOI Listing |
Mol Ther
January 2025
Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:
Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Idiopathic pulmonary fibrosis (IPF) is an irreversible lung condition that progresses over time, which ultimately results in respiratory failure and mortality. In this study, we found that PLAC8 was downregulated in the lungs of IPF patients based on GEO data, in bleomycin (BLM)-induced lungs of mice, and in primary murine alveolar epithelial type II (pmATII) cells and human lung epithelial cell A549 cells. Overexpression of PLAC8 facilitated autophagy and inhibited apoptosis of pmATII cells and A549 cells in vitro.
View Article and Find Full Text PDFJ Transl Med
January 2025
Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.
Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.
Cell Mol Life Sci
December 2024
Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.
Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!