Helicobacter pylori colonizes the human stomach and confers an increased risk for the development of peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. A secreted H. pylori toxin, VacA, can cause multiple alterations in gastric epithelial cells, including cell death. In this study, we sought to identify host cell factors that are required for VacA-induced cell death. To do this, we analyzed gene trap and short hairpin RNA (shRNA) libraries in AZ-521 human gastric epithelial cells and selected for VacA-resistant clones. Among the VacA-resistant clones, we identified multiple gene trap library clones and an shRNA library clone with disrupted expression of connexin 43 (Cx43) (also known as gap junction protein alpha 1 [GJA1]). Further experiments with Cx43-specific shRNAs confirmed that a reduction in Cx43 expression results in resistance to VacA-induced cell death. Immunofluorescence microscopy experiments indicated that VacA did not colocalize with Cx43. We detected production of the Cx43 protein in AZ-521 cells but not in AGS, HeLa, or RK-13 cells, and correspondingly, AZ-521 cells were the most susceptible to VacA-induced cell death. When Cx43 was expressed in HeLa cells, the cells became more susceptible to VacA. These results indicate that Cx43 is a host cell constituent that contributes to VacA-induced cell death and that variation among cell types in susceptibility to VacA-induced cell death is attributable at least in part to cell type-specific differences in Cx43 production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911829 | PMC |
http://dx.doi.org/10.1128/IAI.00827-13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!