Polyphenolic compounds of Achyranthes aspera (PCA) extract is evaluated for anti-cancerous and cytokine based immunomodulatory effects. The PCA extract contains known components of phenolic acid and flavonoids such as mixture of quinic acid, chlorogenic acid, kaempferol, quercetin and chrysin along with many unknown components. PCA has been orally feed to urethane (ethyl carbamate) primed lung cancerous mice at a dosage of 100 mg/kg body weight for 30 consecutive days. 100 mg powder of A. aspera contains 2.4 mg phenolic acid and 1.1 mg flavonoid (2:1 ratio). Enhanced activities and expression of antioxidant enzymes GST, GR, CAT, SOD, while down regulated expression and activation of LDH enzymes in PCA feed urethane primed lung cancerous tissues as compared to PCA non-feed urethane primed lung cancerous tissues were observed. PCA feed urethane primed lung tissues showed down regulated expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α along with TFs, NF-κB and Stat3 while the expression of pro-apoptotic proteins Bax and p53 were enhanced in PCA feed urethane primed lung tissues. FTIR and CD spectroscopy data revealed that PCA resisted the urethane mediated conformational changes of DNA which is evident by the shift in guanine and thymine bands in FTIR from 1,708 to 1,711 cm(-1) and 1,675 to 1,671 cm(-1), respectively in PCA feed urethane primed lung cancerous tissues DNA in comparison to urethane primed lung cancerous tissues DNA. The present study suggests that PCA components have synergistic anti-cancerous and cytokine based immunomodulatory role and DNA conformation restoring effects. However, more research is required to show the effects of each component separately and in combination for effective therapeutic use to cure and prevent lung cancer including other cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-013-2850-6 | DOI Listing |
J Trauma Acute Care Surg
December 2024
From the Department of Surgery (J.T.R.), and Blood, Heart, Lung, and Immunology Research Center (J.T.R., K.E.R.), University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Surgery (A.J.R., A.B., A.R.B., R.A.C.), University of California Davis, Sacramento, California; Department of Anesthesia and Critical Care (A.M., N.N.), Pontchaillou University Hospital of Rennes, Rennes, France; Department of Anesthesiology and Perioperative Medicine (J.D.R.), University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; and Division of Pulmonary Critical Care Medicine, Department of Medicine (K.E.R.), University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, Ohio.
Background: Cell-free hemoglobin (CFH) and free heme are potent mediators of endotheliopathy and organ injury in sepsis, but their roles in other hemolytic pathologies are not well-defined. A prime example is trauma where early hemolysis may initiate damage and predict outcome. Here, we investigated the presence of plasma CFH, heme, and their major scavengers after traumatic injury.
View Article and Find Full Text PDFJACC Adv
January 2025
Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
JCI Insight
December 2024
Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS.
View Article and Find Full Text PDFJACC Adv
January 2025
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
JCI Insight
December 2024
Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesi, University of Central Florida, Orlando, United States of America.
Specialized memory CD4 T cells that reside long-term within tissues are critical components of immunity at portals of pathogen entry. In the lung, such tissue-resident memory (TRM) cells are activated rapidly after infection and promote local inflammation to control pathogen levels before circulating T cells can respond. However, optimal clearance of Influenza A virus can require TRM and responses by other virus-specific T cells that reach the lung only several days after their activation in secondary lymphoid organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!