Tissue culture may generate useful genetic variation for quantitative traits. The objective of this study was to analyze genetic variation for ten quantitative traits of soybean [Glycine max (L.) Merr.] among lines derived from the tissue culture of three cultivars. The three cultivars used to obtain R0 plants from tissue culture were "BSR 101", "Hodgson 78", and "Jilin 3". A total of 63 R0-derived lines of BSR 101, eight of Hodgson 78, and 42 of Jilin 3 was planted with the untreated controls in row plots in a randomized complete-block design with three replications at two locations for each of 2 years. The traits evaluated were days to beginning bloom (R1), beginning seed (R5), beginning maturity (R7), full maturity (R8), height, lodging, seed yield, seed weight, protein content, and oil content. Significant (P < 0.05) variation was observed among lines for each of the ten quantitative traits. There was 57.1% of the BSR 101 lines, 87.5% of the Hodgson 78 lines, and 76.2% of the Jilin 3 lines that were significantly different from the controls for at least one trait. The percentages of lines that were significantly different from the control for an individual trait ranged from 2.7% for oil content to 25.7% for R7. The magnitude of the changes was relatively small. Although this genetic variation may be useful for cultivar development, greater variability at less expense would be expected with conventional artificial hybridization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00223743 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!