Simulated acid rain affects birch leaf endophyte populations.

Microb Ecol

Department of Biology and Kevo Subarctic Research Institute, University of Turku, FIN-20500, Turku, Finland.

Published: November 1993

Endophytes were frequently isolated from mountain birch (Betula pubescens var. tortuosa (Ledeb.) Nyman) leaves at a subarctic site where natural air pollution is low. We tested whether simulated acid rain had any influence on the occurrence of endophytes. Dry controls with only ambient rain and irrigated controls treated with spring water of pH 6 were compared with acid treatments at pH 3 and pH 4, prepared by adding both sulphuric and nitric acids. Treatments began in 1985 and leaf samples were taken twice during the summer of 1992. Leaves were surface sterilized, five leaf disks from each leaf placed on malt extract agar, and growing colonies were counted and identified. The most frequently isolated endophyte from birch leaves was a Fusicladium anamorph of Venturia sp. (88% of all the isolates in July and 75% of all the isolates in August), followed by a sterile mycelium and Melanconium sp. The number of endophytes isolated and the species number increased from July to August. Endophytes were most frequently isolated from the basal part of the midrib. The percentage of colonization by endophytes was similar in short and long shoots. More endophytes were isolated from leaves of branches taken at 1 m height than at 2 m height. The stronger acid rain treatment (pH 3) reduced by approximately 25% the number of isolated endophytes in August. Treatments did not have any effect on species composition of endophyte assemblages in birch leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00176955DOI Listing

Publication Analysis

Top Keywords

acid rain
12
frequently isolated
12
simulated acid
8
endophytes frequently
8
birch leaves
8
endophytes isolated
8
endophytes
7
isolated
6
leaves
5
rain
4

Similar Publications

Apple Bitter Rot: Biology, Ecology, Omics, Virulence Factors, and Management of Causal Colletotrichum Species.

Mol Plant Pathol

January 2025

Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Winchester, Virginia, USA.

Unlabelled: Apple bitter rot is caused by various Colletotrichum spp. that threaten apple production globally resulting in millions of dollars in damage annually. The fungus causes a decline in fruit quality and yield, eventually rotting the fruit and rendering it inedible.

View Article and Find Full Text PDF

Synergistic oxidative modification and covalent cross-linking for the construction of sesbania gum-based high efficiency dust suppression foam sols.

Int J Biol Macromol

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.

To effectively utilize sesbania gum in coal dust control and address the limitations of excessive viscosity and mediocre strength, oxidation treatment was used to improve its fluidity. Polyvinyl alcohol (PVA) and sodium trimetaphosphite (STMP) were used to enhance oxidized sesbania gum OSG, and crosslinking technology was used to improve its mechanical stability. This study developed a novel foam dust suppressant OSG-PVA/SDBS by response surface design, and the optimized dust suppressant material exhibited excellent adhesion and curing properties.

View Article and Find Full Text PDF

Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts.

View Article and Find Full Text PDF

An ideal green leaf-deposited pesticide formulation should offer advantages such as good water dispersibility, strong foliar affinity, sustained or controlled release of active ingredients, photostability and rain-fastness, minimal nontarget toxicity, use of nontoxic organic solvents, and degradable adjuvants. In line with this objective, we present green preparation of a colloidal pesticide formulation using optimized lysine-derived carbon dots (LysCDs)-modified CaCO (LysCDs/CaCO) particles as the carrier and abamectin (Abm) as the active ingredient. The loading capacity of abamectin in this colloidal pesticide (LysCDs/CaCO/Abm) is 1.

View Article and Find Full Text PDF
Article Synopsis
  • Acid rain and carbonization are significant environmental factors that deteriorate urban concrete structures, but their combined effects on concrete deterioration have been under-researched.
  • Four experimental regimes were designed to study the deterioration of white ultra-high performance concrete (WUHPC) under these conditions, revealing accelerated corrosion when both acid rain and carbonization were present.
  • The results indicated that acid rain alone led to initial strength loss and creation of white crystals, while the combined effects of acid rain and carbonization greatly increased deterioration rates, resulting in a significant 27.7% reduction in strength and faster erosion compared to single carbonization.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!