A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. | LitMetric

Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications.

Nanoscale

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Published: January 2014

We present the next generation covert plasmonic security labels based on Ag nanowire structures and their polarization dependent surface-enhanced Raman scattering (SERS) imaging. The security labels consist of Ag nanowires fabricated by two-photon lithography and thermal evaporation, where molecular probes of choice are deposited. Simulation and experimental results show that the SERS signals from the embedded molecules depend significantly on the polarization of the incident field. The covert molecular information cannot be revealed directly from the physical features, but can only be read-out selectively by polarization-dependent SERS imaging. Our plasmonic security labels exhibit very narrow spectral fingerprint vibration, which is more specific than broadband colorimetry-based systems. The polarization-dependent SERS intensity, molecular fingerprint of SERS spectra, and versatile geometrical design by two-photon lithography have made our plasmonic Ag nanowire structures an ideal candidate as advanced security solutions for anti-counterfeiting application.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr04375dDOI Listing

Publication Analysis

Top Keywords

security labels
12
plasmonic security
8
nanowire structures
8
sers imaging
8
two-photon lithography
8
polarization-dependent sers
8
sers
5
encoding molecular
4
plasmonic
4
molecular plasmonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!