Drug-induced liver injury (DILI) is a major cause of failed drug development, withdrawal and restricted usage. Therefore screening assays which aid selection of candidate drugs with reduced propensity to cause DILI are required. We have investigated the toxicity of 144 drugs, 108 of which caused DILI, using assays identified in the literature as having some predictivity for hepatotoxicity. The validated assays utilised either HepG2 cells, HepG2 cells in the presence of rat S9 fraction or isolated human hepatocytes. All parameters were quantified by multiplexed and automated high content fluorescence microscopy, at appropriate time points after compound administration (4, 24 or 48h). The individual endpoint which identified drugs that caused DILI with greatest precision was maximal fold induction in CM-H2DFFDA staining in hepatocytes after 24h (41% sensitivity, 86% specificity). However, hierarchical clustering analysis of all endpoints provided the most sensitive identification of drugs which caused DILI (58% sensitivity, 75% specificity). We conclude that multi-parametric high content cell toxicity assays can enable in vitro detection of drugs that have high propensity to cause DILI in vivo but that many DILI compounds exhibit few in vitro signals when evaluated using these assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2013.10.015 | DOI Listing |
Background And Aims: Alcoholic hepatitis (AH) and hepatocellular carcinoma (HCC) are common liver diseases. Chronic inflammation caused by AH can progress to alcoholic cirrhosis (AC) and eventually HCC.
Methods: This study sought to ascertain potential shared genes between AH and HCC through the utilization of multiple transcriptome databases.
Talanta
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.
Purpose: Major depressive disorder is one of the most common and burdensome psychiatric disorders worldwide. This study evaluated the anxiolytic- and antidepressant-like activity of three semi-synthetic derivatives of xylopic acid (XA) to identify the most promising derivative based on mechanism(s) of action, in vivo pharmacokinetics and in vitro cytotoxicity.
Methods: The anxiolytic potential and the involvement of GABAergic mechanisms were assessed in the elevated plus-maze and open field tests in mice.
Integr Cancer Ther
January 2025
National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!