Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway.

J Ethnopharmacol

Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China. Electronic address:

Published: September 2014

Ethnopharmacological Relevance: Xiao-Xu-Ming decoction (XXMD) has been used to treat stroke and other neurological diseases for more than 1000 years. The purpose of this study was to investigate the effects of XXMD on mitochondrial damage and apoptosis after cerebral ischemia and reperfusion.

Materials And Methods: Male Sprague-Dawley rats were randomly divided into 3 groups: sham, cerebral ischemia and reperfusion (I/R), and cerebral ischemia and reperfusion plus XXMD (60 g/kg/day) (XXMD60). Focal cerebral ischemia and reperfusion models were induced by middle cerebral artery occlusion. Cerebral ischemic injury was evaluated by hematoxylin and eosin staining. Ultrastructural features of mitochondria in the penumbra of the ischemic cortex were analyzed by transmission electron microscopy. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) staining and cleaved caspase 3 immunohistochemistry. Proteins in the mitochondrial p53 pathway were detected by western blot and immunofluorescence.

Results: The results showed that XXMD treatment markedly attenuated ischemic changes, preserved mitochondrial integrity, and significantly reduced apoptosis. In addition, we found that XXMD treatment reduced p53 and Bax levels and increased Bcl-2 levels in mitochondrial fractions. XXMD significantly blocked the release of cytochrome c and Smac/Diablo from mitochondria, and inhibited activation of caspase 9 and caspase 3 in cytoplasmic fractions. Increased expression of c-IAP1 was observed in the XXMD60 group.

Conclusions: The findings demonstrated that XXMD protected mitochondria from ischemic injury and inhibited apoptosis. The mitochondrial p53 pathway could be partially involved in the protective effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2013.10.042DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia
20
ischemia reperfusion
16
mitochondrial p53
12
p53 pathway
12
xiao-xu-ming decoction
8
mitochondrial integrity
8
focal cerebral
8
ischemic injury
8
xxmd treatment
8
mitochondrial
7

Similar Publications

Retraction Note: Comment on, "Differential DNA methylation associated with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review".

Neurosurg Rev

January 2025

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.

View Article and Find Full Text PDF

Effect of anemoside B4 on ameliorating cerebral ischemic/reperfusion injury.

Iran J Basic Med Sci

January 2025

Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.

Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.

View Article and Find Full Text PDF

Objectives: Ellagic acid (EA) is a natural polyphenol with anti-cancer, anti-oxidant, anti-inflammatory, antibacterial, and other effects. However, the role of EA in cerebral ischemia/reperfusion injury (CIRI) remains unclear. This study aims to investigate the neuroprotective effects of EA in CIRI.

View Article and Find Full Text PDF

Objective: The aim of this study was to examine the levels of hematologic parameters in acute ischemic stroke (AIS) and transient ischemic attack (TIA) and to evaluate the use of Neutrophil/Lymphocyte ratio (NLR), Systemic Immune-Inflammation Index (SII), and systemic inflammation response index (SIRI) in the differentiation of AIS and TIA.

Materials And Methods: Data and hematological results of patients admitted to the emergency department and diagnosed with AIS and TIA were compared retrospectively.

Results: The study included 36 TIA patients (M/F = 15/21) with a mean age of 64.

View Article and Find Full Text PDF

The gradually increasing age of the world population implies that the prevalence of neurodegenerative diseases also continues to rise. These diseases are characterized by a progressive loss of cognitive and motor functions. Parkinson's disease, which involves the gradual death of specialized neural tissue, is a striking example of a neurodegenerative process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!