Aim: Huntington's disease (HD) is an autosomal dominant disorder, for which clinically available drugs offer only symptomatic relief. These prescription drugs are not free of side effects, and the patients usually suffer from anxiety and depression. We investigated quercetin, a dietary flavonoid with free radical scavenging properties, for its beneficial potential if any, in 3-nitropropionic acid (3-NP)-induced HD in rats where both drugs were administered simultaneously.

Methods: Performance of rats on beam balancing, elevated plus maze and gait traits were investigated following 3-NP and/or quercetin treatments for 4 days. Striatal biogenic amine levels and monoamine oxidase activity were assayed. Striatal sections were examined for Cd11B and glial fibrillary acidic protein immunoreactivity, and for evidences of neuronal lesion.

Results: Quercetin significantly attenuated 3-NP-induced anxiety, motor coordination deficits, and gait despair. While the dopaminergic hyper-metabolism was unaffected, quercetin provided a significant reduction of 3-NP mediated increase in serotonin metabolism. Quercetin failed to affect 3-NP-induced striatal neuronal lesion, but decreased microglial proliferation, and increased astrocyte numbers in the lesion core.

Conclusion: These results taken together suggest that quercetin could be of potential use not only for correcting movement disturbances and anxiety in HD, but also for addressing inflammatory damages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493046PMC
http://dx.doi.org/10.1111/cns.12189DOI Listing

Publication Analysis

Top Keywords

serotonin metabolism
8
huntington's disease
8
quercetin
7
quercetin improves
4
improves behavioral
4
behavioral deficiencies
4
deficiencies restores
4
restores astrocytes
4
astrocytes microglia
4
microglia reduces
4

Similar Publications

: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.

View Article and Find Full Text PDF

Caffeine consumption is regarded as a widespread phenomenon, and its usage has continued to increase. In addition, the growing usage of antidepressants worldwide and increase in mental health disorders were shown in recent statistical analyses conducted by the World Health Organisation. The coadministration of caffeine and antidepressants remains a concern due to potential interactions that can alter a patient's response to therapy.

View Article and Find Full Text PDF

Alterations in the kynurenine pathway, and in particular the balance of neuroprotective and neurotoxic metabolites, have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and antidepressant treatment response. In this study, we examined the relationship between changes in kynurenine pathway activity (Kynurenine/Tryptophan ratio), focusing on the balance of neuroprotective-to neurotoxic metabolites (Kynurenic Acid/Quinolinic Acid and Kynurenic Acid/3-Hydroxykynurenine ratios), and response to 8 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, including early changes four weeks after SSRI initiation. Additionally, we examined relationships between kynurenine metabolite ratios and three promising biomarkers of depression and antidepressant response: amygdala/hippocampal volume, and glutamate metabolites in the anterior cingulate cortex.

View Article and Find Full Text PDF

Background: In the past few decades, selective serotonin reuptake inhibitors (SSRIs) became widely used antidepressants worldwide. Therefore, the adverse reactions of patients after SSRI administration became a public and clinical concern. In this study, we conducted a pharmacovigilance study using the Adverse Event Reporting System (FAERS) database of the US Food and Drug Administration.

View Article and Find Full Text PDF

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!