A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of light energy and reducing agents on C60-mediated photosensitizing reactions. | LitMetric

Many biomolecules contain photoactive reducing agents, such as reduced nicotinamide adenine dinucleotide (NADH) and 6-thioguanine (6-TG) incorporated into DNA through drug metabolism. These reducing agents may produce reactive oxygen species under UVA irradiation or act as electron donors in various media. The interactions of C60 fullerenes with biological reductants and light energy, especially via the Type-I electron-transfer mechanism, are not fully understood although these factors are often involved in toxicity assessments. The two reductants employed in this work were NADH for aqueous solutions and 6-TG for organic solvents. Using steady-state photolysis and electrochemical techniques, we showed that under visible light irradiation, the presence of reducing agents enhanced C60 -mediated Type-I reactions that generate superoxide anion (O2(.-)) at the expense of singlet oxygen ((1)O2) production. The quantum yield of O2(.-) production upon visible light irradiation of C60 is estimated below 0.2 in dipolar aprotic media, indicating that the majority of triplet C60 deactivate via Type-II pathway. Upon UVA irradiation, however, both C60 and NADH undergo photochemical reactions to produce O2(.-), which could lead to a possible synergistic toxicity effects. C60 photosensitization via Type-I pathway is not observed in the absence of reducing agents.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12206DOI Listing

Publication Analysis

Top Keywords

reducing agents
20
light energy
8
uva irradiation
8
visible light
8
light irradiation
8
irradiation c60
8
c60
6
reducing
5
agents
5
effects light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!