Objective: Liver regeneration following hepatectomy can stimulate the growth of hepatocellular carcinoma (HCC), and major hepatectomy can be associated with activation of hepatic progenitor cells (HPCs). The aim of this study was to evaluate how HPCs influence the malignant potential of tumor cells in vitro and HCC tumor growth after surgery in a rodent model.

Material And Methods: Hepatoma cells (JM1) were cultured with conditioned medium (CM) from syngeneic HPCs (WB-F344). Growth rate, resistance to Adriamycin, and expression patterns for invasiveness and stemness were compared with naïve JM1. Microscopic HCC tumors from naïve JM1 or JM1 cultured with CM were inoculated in Fischer 344 rats undergoing 70% hepatectomy with or without simultaneous infusion of WB-F344. Tumor growth and invasiveness-related factors were compared. Buffalo rats were induced with Morris hepatoma cells. Liver tissue from both in vivo models was examined with regard to activation of cells with progenitor-like phenotype.

Results: Co-culture with CM resulted in an increased resistance to Adriamycin and enhanced expressions of α-FP, MMP9, ABCG2, CD133, and SOX2, as well as the activation of ERK, AKT, WNT, and TGF-β1 pathways. Tumor size and metastases were significantly higher in groups with co-cultured cells or HPCs infusion. After 70% hepatectomy and tumor implantation, cells positive for α-FP, CK19, and CD133 were found, thus suggesting a progenitor-like phenotype in the setting of epithelial-mesenchymal transition.

Conclusion: HPCs have a marked effect on HCC cells in vitro and appear to stimulate the growth and malignant potential of experimental HCC tumors.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00365521.2013.854406DOI Listing

Publication Analysis

Top Keywords

cells
9
hepatic progenitor
8
progenitor cells
8
hepatocellular carcinoma
8
stimulate growth
8
cells hpcs
8
malignant potential
8
cells vitro
8
tumor growth
8
hepatoma cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!