Molecular mechanisms of Cr(VI) resistance in bacteria and fungi.

FEMS Microbiol Rev

Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente - sezione di Microbiologia, Università degli Studi di Firenze, Florence, Italy.

Published: July 2014

Hexavalent chromium [Cr(VI)] contamination is one of the main problems of environmental protection because the Cr(VI) is a hazard to human health. The Cr(VI) form is highly toxic, mutagenic, and carcinogenic, and it spreads widely beyond the site of initial contamination because of its mobility. Cr(VI), crossing the cellular membrane via the sulfate uptake pathway, generates active intermediates Cr(V) and/or Cr(IV), free radicals, and Cr(III) as the final product. Cr(III) affects DNA replication, causes mutagenesis, and alters the structure and activity of enzymes, reacting with their carboxyl and thiol groups. To persist in Cr(VI)-contaminated environments, microorganisms must have efficient systems to neutralize the negative effects of this form of chromium. The systems involve detoxification or repair strategies such as Cr(VI) efflux pumps, Cr(VI) reduction to Cr(III), and activation of enzymes involved in the ROS detoxifying processes, repair of DNA lesions, sulfur metabolism, and iron homeostasis. This review provides an overview of the processes involved in bacterial and fungal Cr(VI) resistance that have been identified through 'omics' studies. A comparative analysis of the described molecular mechanisms is offered and compared with the cellular evidences obtained using classical microbiological approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1574-6976.12051DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
8
crvi resistance
8
crvi
7
mechanisms crvi
4
resistance bacteria
4
bacteria fungi
4
fungi hexavalent
4
hexavalent chromium
4
chromium [crvi]
4
[crvi] contamination
4

Similar Publications

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Phytochemicals in Obesity Management: Mechanisms and Clinical Perspectives.

Curr Nutr Rep

January 2025

Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.

Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.

Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.

View Article and Find Full Text PDF

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol

January 2025

The Department of Experimental Medicine, Meishan City People's Hospital, No. 288, South Fourth Section, Dongpo Avenue, Meishan, 620000, Sichuan, China.

Background: Thyroid carcinoma (THCA) is the most common cancer of the endocrine system. Natural killer (NK) cell play an important role in tumor immune surveillance. The aim of this study was to explore the possible molecular mechanisms involved in NK cell in THCA to help the management and treatment of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!