A quantitative understanding of the advantages of nanoparticle-based drug delivery vis-à-vis conventional free drug chemotherapy has yet to be established for cancer or other diseases despite numerous investigations. Here, we employ first-principles cell biophysics, drug pharmaco-kinetics, and drug pharmaco-dynamics to model the delivery of doxorubicin (DOX) to hepatocellular carcinoma (HCC) tumor cells and predict the resultant experimental cytotoxicity data. The fundamental, mechanistic hypothesis of our mathematical model is that the integrated history of drug uptake by the cells over time of exposure, which sets the cell death rate parameter, and the uptake rate are the sole determinants of the dose response relationship. A universal solution of the model equations is capable of predicting the entire, nonlinear dose response of the cells to any drug concentration based on just two separate measurements of these cellular parameters. This analysis reveals that nanocarrier-mediated delivery overcomes resistance to the free drug because of improved cellular uptake rates, and that dose response curves to nanocarrier mediated drug delivery are equivalent to those for free-drug, but "shifted to the left;" that is, lower amounts of drug achieve the same cell kill. We then demonstrate the model's general applicability to different tumor and drug types, and cell-exposure time courses by investigating HCC cells exposed to cisplatin and 5-fluorouracil, breast cancer MCF-7 cells exposed to DOX, and pancreatic adenocarcinoma PANC-1 cells exposed to gemcitabine. The model will help in the optimal design of nanocarriers for clinical applications and improve the current, largely empirical understanding of in vivo drug transport and tumor response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891887 | PMC |
http://dx.doi.org/10.1021/nn4048974 | DOI Listing |
Blood Rev
January 2025
Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China. Electronic address:
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined.
View Article and Find Full Text PDFJ Formos Med Assoc
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:
Controlling hypertension has become an important issue in the elderly population in whom neurological comorbidities are highly prevalent. Most of the large-scale trials focusing on hypertension management in older populations have excluded patients with comorbid neurological disorders. However, this population requires special considerations, as the benefits of antihypertensive agents are mostly uncertain and there is a higher risk of adverse events.
View Article and Find Full Text PDFAdv Clin Chem
January 2025
Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States. Electronic address:
Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe.
View Article and Find Full Text PDFJ Adolesc Health
February 2025
Division of Cancer Control and Population Sciences, Behavioral Research Program, Health Behaviors Research Branch, National Cancer Institute, Rockville, Maryland.
Brachytherapy
January 2025
Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui 230022, PR China. Electronic address:
Purpose: To compare the effectiveness and safety of CT-guided iodine-125 seed brachytherapy in conjunction with chemotherapy against chemotherapy alone for the management of intermediate and advanced non-small cell lung cancer (NSCLC) lacking oncogenic driving genes.
Methods And Materials: Retrospective analysis was conducted on clinical data from 128 patients diagnosed with intermediate and advanced non-small cell lung cancer who received iodine-125 combined with chemotherapy or chemotherapy alone due to the absence of oncogenic driver gene mutations. The patients in two groups were compared at 6-month follow-up for objective remission rate (ORR), Disease control rate (DCR), local progression-free survival (LPFS), overall survival (OS), clinical symptom improvement, and adverse events.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!