Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) belongs to peptidyl-prolyl cis-trans isomerase (PPIase) and is a novel promising anticancer target. Based on the lead structure of benzophenone, a series of novel diarylether derivatives containing a pyrimidine ring were designed and synthesized. The inhibitory activities on Pin1 of compounds 5a-5d and 6a-6i were evaluated by a protease-coupled enzyme assay. Of all the evaluated compounds, 6 compounds displayed inhibitory activities. Molecular docking was performed using FlexX algorithm to explore the binding mode of the active molecules.
Download full-text PDF |
Source |
---|
ACS Med Chem Lett
January 2025
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds (IC = 11.55 μM) and (IC = 3.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).
View Article and Find Full Text PDFJ Cancer Prev
December 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China.
Background: Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy. Although previous research has explored associations between plasma proteins and CLL, the causal relationships remain unclear. This study used Mendelian randomization (MR) to investigate the causal relationship between 7156 plasma proteins and CLL risk.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China. Electronic address:
Understanding protein structure is essential for elucidating its function. Cross-linking mass spectrometry (XL-MS) has been widely recognized as a powerful tool for analyzing protein complex structures. However, the effect of cross-linker backbone structure on protein dynamic conformation analysis remains less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!