Human nervous system is capable of modifying motor commands in response to alterations in walking conditions. Previous research has shown that external perturbations that induce gait asymmetry can lead to adaptation in gait parameters. Such strategies have also been shown to temporarily restore gait symmetry in subjects with post stroke hemiparesis. This work aims to develop an experimental paradigm to induce gait asymmetry in human subjects by applying external asymmetric forces on the pelvis through the Tethered Pelvic Assist Device (TPAD). These external forces on the pelvis have the potential to influence the swing and the stance phases of both legs. Eight healthy subjects participated in the experiment where a higher resistive force was applied on the pelvis during the swing phase of the left leg as compared to the right leg. We hypothesized that such asymmetrically applied forces on the pelvis will lead to asymmetric adaptation in the human walking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2013.6650385 | DOI Listing |
Phys Eng Sci Med
January 2025
School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia.
Artificial Intelligence (AI) based auto-segmentation has demonstrated numerous benefits to clinical radiotherapy workflows. However, the rapidly changing regulatory, research, and market environment presents challenges around selecting and evaluating the most suitable solution. To support the clinical adoption of AI auto-segmentation systems, Selection Criteria recommendations were developed to enable a holistic evaluation of vendors, considering not only raw performance but associated risks uniquely related to the clinical deployment of AI.
View Article and Find Full Text PDFClin Biomech (Bristol)
January 2025
Ohio State University Wexner Medical Center, Department of Orthopaedics, Columbus, OH, USA. Electronic address:
Background: Low back pain affects over 80 % of adults, with sacroiliac joint dysfunction accounting for 15-30 % of these cases. Sacroiliac fusion is a surgical procedure for refractory joint pain. While the biomechanics of the joint and its fusion relative to the spinal column are well-known, the hip-spine relationship post-fusion remains unclear.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Background: Giant hydronephrosis as an rare condition is often caused by chronic ureteral obstruction. Nephroplication is a crucial procedure to improve urinary drainage in the kidney-sparing surgery for patients with giant hydronephrosis. However, traditional nephroplication via suturing kidney has technical difficulty and many potential risks.
View Article and Find Full Text PDFSports Biomech
January 2025
School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA.
Increasing cadence is an intervention to reduce injury risk for adolescent long-distance runners. It is unknown how adolescents respond biomechanically when running with a higher than preferred cadence. We examined the influence of increasing cadence on peak joint angles, moments and powers, and ground reaction forces in long-distance runners.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Division of Biomechatronics, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, D-95447 Bayreuth, Germany.
Previous studies on gender differences in running biomechanics have predominantly been limited to joint angles and have not investigated a potential influence of footwear condition. This study shall contribute to closing this gap. Lower body biomechanics of 37 recreational runners (19 f, 18 m) were analysed for eight footwear and two running speed conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!