The taxonomic position of Bifidobacterium stercoris Eg1(T) ( = JCM 15918(T)) based on comparative 16S rRNA gene and hsp60 sequence analyses was found to be controversial, as the strain showed high similarity to the type strain of Bifidobacterium adolescentis, CCUG 18363(T). Therefore, the relationship between the two species was investigated by a taxonomic study that included, in addition to re-evaluation of the 16S rRNA gene sequence, determination of DNA-DNA binding and multilocus sequence analysis (MLSA) of housekeeping genes encoding the DNA-directed RNA polymerase B subunit (rpoC), putative xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp), elongation factor EF-G (fusA), 50S ribosomal protein L2 (rplB) and DNA gyrase B subunit (gyrB). Comparative 16S rRNA gene sequence analysis showed relatively high similarity (98.9 %) between B. stercoris KCTC 5756(T) and B. adolescentis ATCC 15703(T). MLSA revealed close relatedness between B. stercoris KCTC 5756(T) and B. adolescentis CCUG 18363(T), with 99.3-100 % similarity between the rpoC, xfp, fusA, rplB and gyrB gene sequences. In addition, relatively high dnaJ1 gene sequence similarity of 97.7 % was found between the strains. Similar phenotypes and a high DNA-DNA binding value (78.9 %) confirmed that B. stercoris and B. adolescentis are synonymous. Based on these results, it is proposed that the species Bifidobacterium stercoris Kim et al. 2010 should be reclassified as a later heterotypic synonym of Bifidobacterium adolescentis Reuter 1963 (Approved Lists 1980).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/ijs.0.054957-0 | DOI Listing |
Ann Vasc Dis
January 2025
Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
Anim Microbiome
January 2025
National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceInstitute of Feed Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
Background: As the pet population grows, there is increasing attention on the health and well-being of companion animals. Weaning, a common challenge for young mammals, often leads to issues such as diarrhea, growth retardation, and in severe cases, even mortality. However, the specific changes in gut microbiota and metabolites in kittens following weaning remain unclear.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFFoods
December 2024
Food Engineering Department, Federal University of Ceara, Fortaleza 60440-900, CE, Brazil.
The present study evaluates the effects of açai juice containing gluco-oligosaccharides and dextran, fermented by NRRL B-41408 (synbiotic juice), on the human fecal microbiota. The juice is subjected to simulated digestion and fecal fermentation after production and 42 days of refrigerated storage. High throughput 16S rRNA sequencing and HPLC are used to identify the bacterial cells and metabolites.
View Article and Find Full Text PDFBiosci Microbiota Food Health
July 2024
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
In end-stage kidney disease requiring hemodialysis, patients at nutritional risk have a poor prognosis. The gut microbiota is important for maintaining the nutritional status of patients. However, it remains unclear whether an altered gut microbiota correlates with increased nutritional risk in patients undergoing hemodialysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!