The transition from spiral to distichous leaf arrangement during gibberellic-acid (GA3)-induced rejuvenation in Hedera was studied in detail by scanning electron microscopy of the shoot apical meristem. The transition, which involves the initiation of about 14 new leaf primordia, is accomplished by progressive increments in the divergence angle between the leaf primordia from an initial average value of 138.9 ° until it approaches 180 °. This process is preceded, as well as accompanied, by an increased radial displacement of young leaf primordia away from the apical meristem. Although the width of the leaf primordia also increases, this is unlikely to be a causal factor since it occurs only late in the transition. The size of the primordium-free area of the apical meristem is also unlikely to be involved. Quantitative analysis shows that the divergence angle of consecutive leaf primordia commonly fluctuates between relatively large and small values. Thus the transitional stages form a spirodistichous arrangement in which the divergence angle within each pair of leaves is large relative to that between leaf pairs. The stimulation of the radial displacement of the leaf primordia and the associated phyllotactic transition may involve GA3-induced modification in the spatial organization of cortical microtubules in the apical meristem and related changes in directional cell expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00194058DOI Listing

Publication Analysis

Top Keywords

leaf primordia
28
apical meristem
20
divergence angle
12
leaf
9
shoot apical
8
radial displacement
8
primordia
7
apical
5
meristem
5
gibberellin-induced reorganization
4

Similar Publications

Background And Aims: Recent studies have documented numerous morphoanatomical variations for the seed coat in Bromeliaceae. However, the structural diversity and character evolution of the embryo within this family remain largely unexplored. Given the embryo's significance in plant diversification, this research aims to investigate the morphology and key anatomical features of Bromeliaceae embryos, providing insights into character evolution, taxonomic applications, and reproductive biology.

View Article and Find Full Text PDF

The reduction of leaves was a key event in the evolution of the succulent syndrome in Cactaceae, evolving from large, photosynthetic leaves in to nearly suppressed microscopic foliar buds in succulent . This leaf reduction was accompanied by the development of spines. Early histological studies, dating back a century, of the shoot apical meristem (SAM) in several species concluded that, in succulent cacti, axillary buds became areoles and leaves transformed into spines.

View Article and Find Full Text PDF

Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.

New Phytol

December 2024

Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil.

Article Synopsis
  • The study investigates how the age-related microRNA miR156 influences the development of extrafloral nectaries (EFNs) in two species of passion flower.
  • Results show that manipulation of miR156 affects both leaf maturation and EFN formation, with overexpression leading to smaller and fewer EFNs, while reduced activity results in larger EFNs in one species.
  • This research highlights a connection between miR156 activity, nectar sugar profiles, and the ecological interactions between EFNs and ants, underscoring the role of the miR156/SPL module in regulating these traits based on leaf age.
View Article and Find Full Text PDF

Introduction: Recent advancements in agricultural technology have highlighted the potential of eco-friendly innovations, such as plasma-activated water (PAW), for enhancing seed germination, growth, and biomass production.

Methods: In this study, we investigated the effects of PAW irrigation on young sorghum seedlings through phenotypic and transcriptional analyses. We measured growth parameters, including seedling height, stem thickness, and biomass, across five sorghum varieties: BTx623, Sodamchal, Noeulchal, Baremae, and Hichal.

View Article and Find Full Text PDF
Article Synopsis
  • * A survey revealed that 70% of plants in a 1 hectare area were affected, with symptoms including browning and rot.
  • * Researchers isolated pathogens from infected plants and identified 21 different isolates with distinct characteristics, confirming the presence of a specific fungus causing the disease through molecular techniques.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!