Effects of propentofylline on CNS remyelination in the rat brainstem.

Microsc Res Tech

Department of Environmental and Experimental Pathology, University Paulista, São Paulo, SP, Brazil; Department of Veterinary Medicine, University Cruzeiro do Sul, São Paulo, SP, Brazil.

Published: January 2014

Propentofylline (PPF) is a xanthine derivative with pharmacological effects distinct from those of the classical methylxanthines. It depresses activation of microglial cells and astrocytes which is associated with neuronal damage during neural inflammation and hypoxia. The aim of this study was to evaluate whether PPF had the capacity of affecting glial cells behavior during the process of demyelination and remyelination following ethidium bromide (EB) gliotoxic injury. EB injection into the CNS is commonly used as an experimental demyelinating model inducing local oligodendroglial and astrocytic death, which results in primary demyelination, blood-brain barrier and glia limitans disruption and Schwann cells invasion. Sixty Wistar rats were divided into four different groups receiving 10 microlitres of 0.1% EB or 0.9% saline solution into the cisterna pontis and treated or not with the xanthine. PPF treatment was done using 12.5 mg/kg/day by the intraperitonial route for 31 days of the experimental period. The rats were euthanized from 7 to 31 days after EB injection and brainstem sections were collected and processed for light and transmission electron microscopy studies. Results from both groups were compared by using a semi-quantitative method developed for documenting in semithin sections the extent and nature of remyelination of demyelinating lesions. Results showed that PPF administration after EB injection significantly increased both oligodendroglial and Schwann cell remyelination at 31 days (mean remyelination scores of 3.67 ± 0.5 for oligodendrocytes and 1.27 ± 0.49 for Schwann cells) compared to untreated animals (scores of 3.19 ± 0.57 and 0.90 ± 0.33, respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.22308DOI Listing

Publication Analysis

Top Keywords

schwann cells
8
remyelination
5
effects propentofylline
4
propentofylline cns
4
cns remyelination
4
remyelination rat
4
rat brainstem
4
brainstem propentofylline
4
ppf
4
propentofylline ppf
4

Similar Publications

Background: Optic nerve schwannomas are an extremely rare pathology in neurosurgery. Their origin is rather debatable given the structure of the optic nerve, which does not typically have Schwann cells therein. However, a number of clinical cases of optic nerve tumors classified as schwannomas have been described in the literature.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Schwann cells (SCs) can potentially transform into the repair-related cell phenotype after injury, which can promote nerve repair. Ferroptosis occurs in the SCs of injured tissues, causing damage to the SCs and exacerbating nerve injury. Targeting ferroptosis in SCs is a promising therapeutic strategy for effective repair; however, research on ferroptosis in the peripheral nervous system remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!